Answer:
1/6
Step-by-step explanation:
The centipede that Maria measured was 1 1/12 inches long. If you convert this to an improper fraction it is equal to 13/12 inches. Now to find how much longer Maria's centipede was than Jeromes, you just take 11/12 and minus it from 13/12 which is equal to 2/12 of an inch, which then simplifies to 1/6 of an inch.
I don’t know all of it but....
Axis of symmetry is x=5
Vertex changed to (5,8)
Parabola opens down
Answer:
B) 4√2
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]: ![\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%20%2B%20%5By%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

Interval [0, π]
<u>Step 2: Find Arc Length</u>
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:

- Substitute in variables [Arc Length Formula - Parametric]:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B%5B1%20%2B%20sin%28t%29%5D%5E2%20%2B%20%5B-cos%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
- [Integrand] Simplify:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx)
- [Integral] Evaluate:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx%20%3D%204%5Csqrt%7B2%7D)
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e
Answer:
Measures are SV=9 units., SY=14 units, YW=
, YW=
Step-by-step explanation:
Given Y is the circumcenter of ΔSTU. we have to find the measures SV, SY, YW and YX.
As Circumcenter is equidistant from the vertices of triangle and also The circumcenter is the point at which the three perpendicular bisectors of the sides of the triangle meet.
Hence, VY, YW and YX are the perpendicular bisectors on the sides ST, TU and SU.
Given ST=18 units.
As VY is perpendicular bisector implies SV=9 units.
Also in triangle VTY

⇒ 
⇒ VY^{2}=115
As vertices of triangle are equidistant from the circumcenter
⇒ SY=YT=UY=14 units
Hence, SY is 14 units
In ΔUWY, 
⇒ 
⇒
⇒ YW=
In ΔYXU, 
⇒ 
⇒
⇒ YW=
Hence, measures are SV=9 units., SY=14 units, YW=
, YW=
Step-by-step explanation:
1) Ans 3
2) Ans 6
3) Ans 4
4) Ans 1/5
5) Ans 1/23