No it’s not an integer i looked it up on google.
Answer:
(A)-494
Step-by-step explanation:
Given the arithmetic series

The terms in the sequence are:
- When k=1, 4-3k=4-3(1)=1
- When k=2, 4-3k=4-3(2)=-2
- When k=3, 4-3k=4-3(3)=-5
Therefore, the terms in the sequence are: 1, -2, -5, ...
First term, a =1
Common difference, d=-2-1=-3
The sum of an arithmetic series, ![S_n=\dfrac{n}{2}[2a+(n-1)d]](https://tex.z-dn.net/?f=S_n%3D%5Cdfrac%7Bn%7D%7B2%7D%5B2a%2B%28n-1%29d%5D)
Therefore:
![S_{19}=\dfrac{19}{2}[2(1)+(19-1)(-3)]\\=9.5[2+18*-3]\\=9.5[2-54]\\=9.5*-52\\=-494](https://tex.z-dn.net/?f=S_%7B19%7D%3D%5Cdfrac%7B19%7D%7B2%7D%5B2%281%29%2B%2819-1%29%28-3%29%5D%5C%5C%3D9.5%5B2%2B18%2A-3%5D%5C%5C%3D9.5%5B2-54%5D%5C%5C%3D9.5%2A-52%5C%5C%3D-494)
The correct option is A.
Answer:
The number is: "
12 ".
____________________________________ Let "x" represent "the unknown number" (for which we wish to solve.
The expression:

x <span>− 6 = 2 ; Solve for "x" ;
</span>
_______________________________________________Method 1) Add "6" to EACH SIDE of the equation;
_______________________________________________ →

x − 6 + 6 = 2 + 6 ;
to get:
→

x = 8 ;
______________________________________________Multiply each side of the equation by "

" ; to isolate "x" on one side of the equation ; and to solve for "x" ;
______________________________________________ →
*

x = 8 *

;
→ x = 8 *

;
=

*

;
=

;
=

;
= <span>
1<span>
2 .</span></span>
______________________________________________ x = 12 .
______________________________________________Method 2)______________________________________________
x − 6 = 2 ; Solve for "x" ;
Add "6" to EACH SIDE of the equation;
_______________________________________________ →

x − 6 + 6 = 2 + 6 ;
to get:
→

x = 8 ;
______________________________________________Multiply each side of the equation by "3" ; to get rid of the "fraction" ;
→ 3 *

x = 8 * 3 ;
→

*

x = 8 * 3 ;
→

x = 8 * 3
→

x = 24 ;
→ 2x = 24 ;
→ Divide each side of the equation by "2" ; to isolate "x" on one side of the equation; & to solve for "x" :
2x / 2 = 24 / 2 ;
x = 12 .
__________________________________________________Method 3).__________________________________________________
x − 6 = 2 ; Solve for "x" ;
_______________________________________________Add "6" to EACH SIDE of the equation;
_______________________________________________ →

x − 6 + 6 = 2 + 6 ;
to get:
→

x = 8 ;
______________________________________________Now, divide each side of the equation by "

" ;
to isolate "x" on one side of the equation; & to solve for "x" ;
___________________________________________________{

x } / {

} = 8 / {

} ;
to get: x = 8 / {

} ;
= 8 * (

;
=

*

;
=

;
=

;
=
12 ;
___________________________________________ x = 12 .
___________________________________________NOTE: Variant: (in "Methods 2 & 3") :
___________________________________________At the point where:
___________________________________________ = 8 * (

) ;
=

*

;
__________________________________________ We can cancel out the "2" to a "1" ; and we can cancel out the "8" to a "4" ;
__________________________________________ {since: "8÷2 = 4" ; and since: "2÷2 =1" } ;
__________________________________________and we can rewrite the expression:
__________________________________________ 
*

;
__________________________________________as:

*

;
__________________________________________which equals:
__________________________________________→

;
=

;
=
12 .
__________________________________________ x = 12 .
__________________________________________Answer:
The number is: "
12 ".
__________________________________________
Answer:
Step-by-step explanation: they are lines that form a right angle