because of the tensity in the earth surface
Answer:
(a) 42 N
(b)36.7 N
Explanation:
Nomenclature
F= force test line (N)
W : fish weight (N)
Problem development
(a) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled in at constant speed
We apply Newton's first law of equlibrio because the system moves at constant speed:
∑Fy =0
F-W= 0
42N -W =0
W = 42N
(b) Calculating of weight of the heaviest fish that can be pulled up vertically, when the line is reeled with an acceleration whose magnitude is 1.41 m/s²
We apply Newton's second law because the system moves at constant acceleration:
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
∑Fy =m*a
m= W/g , m= W/9.8 , m:fish mass , W: fish weight g:acceleration due to gravity
F-W= ( W/9.8 )*a
42-W= ( W/9.8 )*1.41
42= W+0.1439W
42=1.1439W
W= 42/1.1439
W= 36.7 N
Actual velocity of the ping-pong ball= 5 m/s
Explanation:
velocity of ping pong ball because of the shot gun= 4 m/s North
velocity added to the ping-pong ball due to the wind=3 m/s
These velocities are perpendicular to each other. so we use Pythagoras theorem to find the resultant velocity of the ping- pong ball
so the actual velocity of the ping-pong ball =V= √4²+3²
V= √25
V= 5 m/s
Answer:
The relativistic speed of a particle is 
Explanation:
Given that,
Time = 6 sec
Force = 1
Mass of the particle 
We need to calculate the acceleration
Using formula of acceleration

Put the value into the formula


We need to calculate the velocity after 6 sec
Using equation of motion

Put the value


The velocity in term of c



Hence, The relativistic speed of a particle is