Answer:
Option b. is correct
Explanation:
An RLC electrical circuit consists of constituent components: a resistor (R), an inductor (L), and a capacitor (C). A resistor, an inductor, and a capacitor are connected in series or parallel.
The impedances of the circuit elements depend on the frequency.
Both impedance magnitudes decrease when the frequency increases
Copper, gold and silver are three of them.
Answer:
m=146.277kg which is rounded to 146kg
Explanation:
Remember that F=ma
But F represents not 250N, but 250cos(35)N since the force is being pulled above the horizontal.
So 250cos(35)=204.7880111 approximately, and since a=1.4m/s^2, we have 204.7880111=m(1.4m/s^2). Then we divide both sides by the acceleration to get the mass. So m=146.2771508kg which the nearest number is 146kg
Mass is always in kg, unless stated otherwise.
The formula we can use in this case is:
d = v0t + 0.5 at^2
v = at + v0
where,
d = distance travelled
v0 = initial velocity = 0 since at rest
t = time travelled
a = acceleration
v = final velocity when it took off
a. d = 0 + 0.5 * 3 * 30^2
d = 1350 m
b. v = 3 * 30 + 0
<span>v = 90 m/s</span>