The projectile (ball) reaches an instantaneous vertical speed (Vy) of zero at maximum height.
so, V(max height) = ¬Г(Vx)^2+(Vy)^2
in this case V(max height) = Vx, where Vy=0
The maximum height, Yf, can be solved using Vfy^2=Viy^2 + 2gy. At maximum height Vfy=0.
Answer:
82.25 moles of He
Explanation:
From the question given above, the following data were obtained:
Volume (V) = 10 L
Mass of He = 0.329 Kg
Temperature (T) = 28.0 °C
Molar mass of He = 4 g/mol
Mole of He =?
Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:
1 Kg = 1000 g
Therefore,
0.329 Kg = 0.329 Kg × 1000 g / 1 Kg
0.329 Kg = 329 g
Thus, 0.329 Kg is equivalent to 329 g.
Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:
Mass of He = 329 g
Molar mass of He = 4 g/mol
Mole of He =?
Mole = mass / molar mass
Mole of He = 329 / 4
Mole of He = 82.25 moles
Therefore, there are 82.25 moles of He in the tank.
Answer:
s = vcos(x)t
50 = 25cos(45)t
cos(45)t = 2
t = 2/cos(45) = 2sqrt(2)
h = vsin(x)t + gt^2/2
h = 25sin(45)*2sqrt(2) - 4.9*8
h = 10.8 metres
Explanation:
Answer: Rock candy is candy made of large sugar crystals. To make rock candy, a supersaturated solution of sugar in water is created and left undisturbed for a few days. The driving force behind crystallization is supersaturation.