It is true that it is possible for a population to not evolve for a while.
There is something called the Hardy-Weinberg theorem, which characterizes the distributions of genotype frequencies in populations that are not evolving.
There are 5 Hardy-Weinberg assumptions:
- no mutation
- random mating
- no gene flow
- infinite population size
- and no selection (natural nor forced).
You can see that some of these are kinda extreme and really hard to get, but with approximations, we can work.
For example, instead of an "infinite population size" we have enough with a really large population, such that genetic drift is negligible.
Concluding, yes, it is possible (but really difficult) for a population to not evolve for a while (at least, in nature), as long as the 5 assumptions above are met.
If you want to learn more, you can read:
brainly.com/question/19431143
Answer:
b. ventricles
The right and left ventricles
Answer:
<u><em>Active Transport</em></u>
Explanation:
<u><em>active transport
</em></u>
During <u><em>active transport</em></u>, substances move against the concentration gradient, from an area of low concentration to an area of high concentration. This process is “active” because it requires the use of energy (usually in the form of ATP). It is the opposite of passive transport.
Answer:
Every living organism is made up of carbon, nitrogen, and phosphates. Nitrogen and carbon are found in amino acids which make up proteins. Phosphates make up DNA and ATP.
Explanation: