Answer:
Reflection over y-axis (-x,y)
Step-by-step explanation:
Reflection over y-axis (-x,y)
A (-2 , 4) , A'( 2,4)
<em>you can check the rest.</em>
To solve this problem you must apply the proccedure shown below:
1. You have the following logarithm:
<span>log(2)n=4
2. Therefore, you con rewrite it as below:
loga(b)=logb/loa
</span>
3. Therefore, you have:
log(2)n=4⇒log(n)/log(2)=4
4. Then, you obtain:
log(n)=4log(2)
5. Therefore, as you can see, the answer for the exercise shown above is the last option, which is:
log(n)=4log(2)
A= 0.25 or 1/4
Hope this helps:)
The given quadrilateral ABCD is a parallelogram since the opposite sides are of same length AB and DC is 4 and AD and BC is 2.
<u>Step-by-step explanation</u>:
ABCD is a quadrilateral with their opposite sides are congruent (equal).
The both pairs of opposite sides are given as AB = 3 + x
, DC = 4x
, AD = y + 1
, BC = 2y.
- AB and DC are opposite sides and have same measure of length.
- AD and BC are opposite sides and have same measure of length.
<u>To find the length of AB and DC :</u>
AB = DC
3 + x = 4x
Keep x terms on one side and constant on other side.
3 = 4x - x
3 = 3x
x = 1
Substiute x=1 in AB and DC,
AB = 3+1 = 4
DC = 4(1) = 4
<u>To find the length of AD and BC :</u>
AD = BC
y + 1 = 2y
Keep y terms on one side and constant on other side.
2y-y = 1
y = 1
Substiute y=1 in AD and BC,
AD = 1+1 = 2
BC = 2(1) = 2
Therefore, the opposite sides are of same length AB and DC is 4 and AD and BC is 2. The given quadrilateral ABCD is a parallelogram.
Answer:
Coordinate D. Because D lies on the 2nd quadrant, meaning that x has a negative value whereas y is positive.