We're given the following function:
![f(x)=log(.75^x)=log[  (\frac{3}{4}) ^{x}]=log( \frac{3^x}{4^x})](https://tex.z-dn.net/?f=f%28x%29%3Dlog%28.75%5Ex%29%3Dlog%5B%20%20%28%5Cfrac%7B3%7D%7B4%7D%29%20%5E%7Bx%7D%5D%3Dlog%28%20%5Cfrac%7B3%5Ex%7D%7B4%5Ex%7D%29%20%20)
In order to see if the function is decreasing we'll take its derivative. If 

 the function is increasing, if 

 the function is decreasing.
We take the derivate:
![\frac{d}{dx}[log( \frac{3^x}{4^x})]= \frac{4^x}{3^x}[ \frac{d}{dx} (\frac{3^x}{4^x})]=\frac{4^x}{3^x} \frac{4^x[ \frac{d}{dx} (3^x)]-3^x[ \frac{d}{dx} (4^x)]}{ 4^2^x}=](https://tex.z-dn.net/?f=%20%5Cfrac%7Bd%7D%7Bdx%7D%5Blog%28%20%5Cfrac%7B3%5Ex%7D%7B4%5Ex%7D%29%5D%3D%20%5Cfrac%7B4%5Ex%7D%7B3%5Ex%7D%5B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%28%5Cfrac%7B3%5Ex%7D%7B4%5Ex%7D%29%5D%3D%5Cfrac%7B4%5Ex%7D%7B3%5Ex%7D%20%5Cfrac%7B4%5Ex%5B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%283%5Ex%29%5D-3%5Ex%5B%20%5Cfrac%7Bd%7D%7Bdx%7D%20%284%5Ex%29%5D%7D%7B%204%5E2%5Ex%7D%3D)
![\frac{4^x}{3^x} \frac{4^x[3^xlog(3)]-3^x[4^x[4^xlog(4)]}{ 4^2^x}=log(3)-log(4)\ \textless \ 0](https://tex.z-dn.net/?f=%5Cfrac%7B4%5Ex%7D%7B3%5Ex%7D%20%5Cfrac%7B4%5Ex%5B3%5Exlog%283%29%5D-3%5Ex%5B4%5Ex%5B4%5Exlog%284%29%5D%7D%7B%204%5E2%5Ex%7D%3Dlog%283%29-log%284%29%5C%20%5Ctextless%20%5C%200) Which implies the function is decreasing.
Which implies the function is decreasing.
Another way to answer the problem (although less insightful) you can take any two real numbers
 
 and 

 such that 

, then if 

 the function is increasing and if 

 the function is decreasing. You can verify the function is decreasing with any two numbers in the function's domain.
 
        
        
        
Go with what u think will help u
        
             
        
        
        
The 0 holds the ten thousandths place as you can see here.
<span>9 tenths </span>
<span>8 hundredths </span>
<span>7 thousandths </span>
<span>0 ten thousandths </span>
3 hundred thousandths
        
             
        
        
        
Parentheses (brackets/braces) are done first according to the order of operations. 
Answer A