Answer:
We need 1.1 grams of Mg
Explanation:
Step 1: Data given
Volume of water = 78 mL
Initial temperature = 29 °C
Final temperature = 78 °C
The standard heats of formation
−285.8 kJ/mol H2O(l)
−924.54 kJ/mol Mg(OH)2(s)
Step 2: The equation
The heat is produced by the following reaction:
Mg(s)+2H2O(l)→Mg(OH)2(s)+H2(g)
Step 3: Calculate the mass of Mg needed
Using the standard heats of formation:
−285.8 kJ/mol H2O(l)
−924.54 kJ/mol Mg(OH)2(s)
Mg(s) + 2 H2O(l) → Mg(OH)2(s) + H2(g)
−924.54 kJ − (2 * −285.8 kJ) = −352.94 kJ/mol Mg
(4.184 J/g·°C) * (78 g) * (78 - 29)°C = 15991.248 J required
(15991.248 J) / (352940 J/mol Mg) * (24.3 g Mg/mol) = 1.1 g Mg
We need 1.1 grams of Mg
The formula for magnesium chlorate is Mg(ClO3)2.
Answer:It is a nuclear process, where energy is produced by smashing together light atoms. It is the opposite reaction of fission, where heavy isotopes are split apart.
Explanation Fusion is the process by which the sun and other stars generate light and heat.
It’s most easily achieved on Earth by combining two isotopes of hydrogen: deuterium and tritium. Hydrogen is the lightest of all the elements, being made up of a single proton and a electron. Deuterium has an extra neutron in its nucleus; it can replace one of the hydrogen atoms in H20 to make what is called “heavy water.”
Answer:
The protection of animals, plants, and natural resources
D. conservation
(for science)
Explanation:
Brainlist plz