CH3 is the empirical formula for the compound.
A sample of a compound is determined to have 1.17g of Carbon and 0.287 g of hydrogen.
The number of atom or moles in the compound is
1.17 g C X 1 mol of C / 12.011 g C = 0.097411 mol of C.
0.287 g H x 1 mol of H / 1 g H = 0.28474 mol H.
This compound contains 0.097411 mol of carbon and 0.28474 mol of Hydrogen.
So we can represent the compound with the formula C0.974H0.284.
Subscripts in formulas can be made into whole numbers by multiplying the smaller subscript by the larger subscript.
we can divide 0.284 by 0.0974.
0.284 / 0.0974 = 3.
So here, Carbon is one and hydrogen is 3.
We can write the above formula as a CH3.
Hence the empirical formula for the sample compound is CH3.
For a detailed study of the empirical formula refer given link brainly.com/question/13058832.
#SPJ1.
Answer:
200 mL = 200 cm³
Explanation:
The relationship between cm³ and mL is 1:1.
1 cm³ = 1 mL
Thus, 200 mL is converted to cm³ as follows:
(200 mL)(1 cm³/1 mL) = 200 cm³
The temperature, pressure and volume of a gas are all related
A solution is a homogeneous mixture of two or more substances. a solution doesn't allow light to scatter. the solute cannot be separated mechanically from the solution.
Answer:
A large quantity
Explanation:
A large quantity will take much longer to melt compared to a small quantity of the same matter.
The rate of melt of a substance is particularly a function of the nature of the substance and the amount of energy supplied to it.
If we assume that we are dealing with different quantities of the same substance, then the one that has more mass will melt faster because less energy would be required to change its state.
A large quantity of matter will take more time to melt.