1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
13

1. Weather factors include

Physics
1 answer:
Vikki [24]3 years ago
8 0

Answer:

1. D

Climate is generally defined as the weather condition that prevails in a particular region over a long period of time. Climate is usually measured by examining the pattern of variation in several climatic factors such as rainfall, temperature, relative humidity, wind, pressure, etc. While the weather of a place can change within a space of few hours, it takes years for a change in climatic condition to occur.  

2. d

3. c

4.a.

5. c

6.<em> a.</em>

<em>7. </em>c

Explanation:

You might be interested in
Charge q is accelerated starting from rest up to speed v through the potential difference V. What speed will charge q have after
adoni [48]

Answer: v = 1.19 * 10^{6} m/s

Explanation: q = magnitude of electronic charge = 1.609 * 10^{-19} c

mass of an electronic charge = 9.10 * 10^{-31} kg

V= potential difference = 4V

v = velocity of electron

by using the work- energy theorem which states that the kinetic energy of the the electron must equal the work done use in accelerating the electron.

kinetic energy = \frac{mv^{2} }{2},  potential energy = qV

hence, \frac{mv^{2} }{2} = qV

\frac{9.10 *10^{-31} * v^{2}  }{2} = 1.609 * 10^{-16} * 4\\\\\\\\9.10*10^{-31}  * v^{2} = 2 * 1.609 *10^{-16} * 4\\\\\\9.10 *10^{-31} * v^{2} = 1.287 *10^{-15} \\\\v^{2} = \frac{1.287 *10^{-15} }{9.10 *10^{31} } \\\\v^{2} = 1.414*10^{15} \\\\v = \sqrt{1.414*10^{15} } \\\\v = 1.19 * 10^{6} m/s

7 0
3 years ago
(b) The distance of mass from mass A if there is no gravitational force acted on C
shepuryov [24]

Answer:

(a) The force, acting on object 'C' is approximately 2.66972 × 10⁻¹⁰ Newtons

(b) The distance of 'C' from 'A', in the direction particle 'B' if there is no  meters gravitational force acting on 'C' is appromimately 0.829 meters or 1.877 meters

Explanation:

The given parameters are;

The mass of particle, A, m₁ = 2 kg

The mass of particle, B, m₂ = 0.3 kg

The mass of particle, C, m₃ = 0.05 kg

The distance between particle 'A' and particle 'B', r₁ = 0.15 m

The distance between particle 'B' and particle 'C', r₂ = 0.05 m

(a) The gravitational force, 'F', is given as follows;

F =G \times \dfrac{m_{1} \times m_{2}}{r^{2}}

Where;

F = The force between the two masses

G = The gravitation constant = 6.67430 × 10⁻¹¹ N·m²/kg²

m₁ = The mass of object 1

m₂ = The mass of object 2

If 'C' is placed at 0.05 m from 'B', we have;

F₂₃ =  6.67430 × 10⁻¹¹ × 0.05 × 0.3/(0.05²) ≈ 4.00458 × 10⁻¹⁰

The gravitational force between force between particle 'B' and particle 'C', F₂₃ = 4.00458 × 10⁻¹⁰ N (towards the right)

F₁₃ =  6.67430 × 10⁻¹¹ × 0.05 × 2/(0.1²) ≈ × 10⁻¹⁰

The gravitational force between force between particle 'A' and particle 'B', F₁₃ = 6.6743 × 10⁻¹⁰ N (towards the left)

The force, 'F', acting on object 'C' = F₁₃ - F₂₃

F = (6.6743 - 4.00458) × 10⁻¹⁰ = 2.66972 × 10⁻¹⁰ N

The force, acting on object 'C' ≈ 2.66972 × 10⁻¹⁰ N

(b), When there is no gravitational force acting on 'C', let the distance of 'C' from 'A' = x

We have;

F₂₃ = F₁₂

F_{23} =G \times \dfrac{m_{1} \times m_{2}}{r_1^{2}} = F_{13} =G \times \dfrac{m_{1} \times m_{3}}{r_2^{2}}

By plugging in the values and removing like terms, we get;

\dfrac{0.3 \times 0.05}{(1.15 - x)^{2}}  = \dfrac{2 \times 0.05}{x^2}

(1.15 - x)² × 2 × 0.05 = 0.3 × 0.05 × x²

0.1·x² - 0.23·x + 1.3225 = 0.015·x²

0.1·x² - 0.23·x + 1.3225 - 0.015·x² = 0

0.085·x² - 0.23·x + 0.13225= 0

x = (0.23± √((-0.23)² - 4 × 0.085 × ( 0.13225)))/(2 × 0.085))

x ≈ 0.829, or x ≈ 1.877

Therefore, the distance of 'C' from 'A', if there is no gravitational force acting on 'C', x ≈ 0.829 m, or x = 1.877 m, in the direction of 'B'

7 0
3 years ago
What would be the resulting condition if Earth's axis was perpendicular to the Sun?
blagie [28]

Answer:

I belive it would be B or D, but B seems more likely

Explanation:

3 0
3 years ago
Read 2 more answers
Consider the expression below. Assume m is an integer. 6m(2m + 18) Enter an expression in the box that uses the variable m and m
Anika [276]
6x2=12m
6x18=108
12m+108
Simplified: m+9 bc 12/12 and 108/12
8 0
3 years ago
The carrot hangs from the ceiling by two ropes (1 and 2).
Vera_Pavlovna [14]

Answer:

The Answer is D!

Explanation:

I checked it on Khan Academy.

3 0
3 years ago
Other questions:
  • Problem 1 An object with m1 = 5kg is attached to a spring of negligible mass. This mass/spring combination is then slid horizont
    6·1 answer
  • A spiral staircase winds up to the top of a tower in an old castle. To measure the height of the tower, a rope is attached to th
    13·1 answer
  • What kind of waves are responsible for all the damage an earthquake causes?
    15·1 answer
  • How many valence electrons are in alkali metals
    5·1 answer
  • A panpipe is made of five pipes. The longest pipe is 25 centimeters long
    6·1 answer
  • 4. Which of the following is equivalent to 800 cm?
    8·1 answer
  • Which of the following is an action-at-a-distance force? friction tension gravity air resistance
    13·2 answers
  • Check the boxes of all the TRUE statements about weight and the acceleration due to gravity.
    12·1 answer
  • A car with a mass of 1500 kg is pulled by a rope that is horizontal to the ground. The tension in the rope is 2000 N and a frict
    8·1 answer
  • An object experiencing uniform circular motion is accelerating. t/f
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!