1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Agata [3.3K]
3 years ago
13

1. Weather factors include

Physics
1 answer:
Vikki [24]3 years ago
8 0

Answer:

1. D

Climate is generally defined as the weather condition that prevails in a particular region over a long period of time. Climate is usually measured by examining the pattern of variation in several climatic factors such as rainfall, temperature, relative humidity, wind, pressure, etc. While the weather of a place can change within a space of few hours, it takes years for a change in climatic condition to occur.  

2. d

3. c

4.a.

5. c

6.<em> a.</em>

<em>7. </em>c

Explanation:

You might be interested in
A diver leaves the end of a 4.0 m high diving board and strikes the water 1.3s later, 3.0m beyond the end of the board. Consider
shutvik [7]

Answer:

4.0 m/s

Explanation:

The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.

Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

d=v_x t

where here we have

d = 3.0 m is the horizontal distance covered

vx is the horizontal velocity

t = 1.3 s is the duration of the fall

Solving for vx,

v_x = \frac{d}{t}=\frac{3.0 m}{1.3 s}=2.3 m/s

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

y(t) = h + v_y t - \frac{1}{2}gt^2

where

h = 4.0 m is the initial height

vy is the initial vertical velocity

We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

0=h+v_y t - \frac{1}{2}gt^2\\v_y = \frac{0.5gt^2-h}{t}=\frac{0.5(9.8 m/s^2)(1.3 s)^2-4.0 m}{1.3 s}=3.3 m/s

So now we can find the magnitude of the initial velocity:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(2.3 m/s)^2+(3.3 m/s)^2}=4.0 m/s

4 0
3 years ago
Plz help i really need someone help
lesantik [10]

Answer:

i can't see the picture, it is blocked off, can you write down your question?

Explanation:

6 0
3 years ago
Use the motion map to answer the question, describe the position and velocity of the object based moo the motion map?
drek231 [11]
Do you have an image?


answer:
3 0
3 years ago
What is the velocity of a wave with a frequency of 45 Hertz and a wavelength of 3 meters?
Juli2301 [7.4K]

Explanation:

By using v=( f )x( lambda )

v= 45 s^-1 x 3 m

Therefore v = 135 ms^-1

8 0
3 years ago
In a game of angry birds you launch a bird with an angle of 53 degrees to horizontal. Unfortunatly, its not a good shot and the
Alisiya [41]

Answer:

The maximum height covered is 3.25 m.

The horizontal distance covered is 9.81 m.

The total time in the air is 1.63 seconds.

Explanation:

The launch speed, u_0= 10 m/s.

Angle of launch with the horizontal, \theta = 53 ^{\circ}

So, the vertical component of the initial velocity,

u_0\sin\theta=10 \sin 53 ^{\circ}\cdots(i).

The horizontal component of the initial velocity,

u_0\cos\theta=10 \cos 53 ^{\circ}

Let, t be the time of flight, to the horizontal distance covered

D=10 \cos (53 ^{\circ})t\cdots(ii).

Not, applying the equation of motion in the vertical direction.

s= ut +\frac 1 2 at^2

Where s is the displacement in time t, u is the initial velocity and a is the acceleration.

In this case, u =10 \sin 53 ^{\circ} (from equation (i), s=0 (as the final height is same as the launch height) and a = -9.81 m/s^2 (negative sign is due to the downward direction).

\Rightarrow 0 = 10 (\sin 53 ^{\circ})t-\frac 1 2 (9.81)t^2

\Rightarrow t= \frac {2\times 10 (\sin 53 ^{\circ})}{9.81}=1.63 seconds.

So, the total time in the air is 1.63 seconds.

From equation (i),

Total horizontal distance covered is

D=10 \cos (53 ^{\circ})\times 1.63 = 9.81 m.

Now, for the maximum height, H, applying the equation of motion as

v^2=u^2+2as

Here, v is the final velocity and v=0 (at the maximum height), and h=H.

So, 0^2=(10 \sin 53 ^{\circ})^2-2(9.81)H

\Rightarrow H = \frac {(10 \sin 53 ^{\circ})^2}{2\times 9.81}

\Rightarrow H = 3.25 m.

Hence, the maximum height covered is 3.25 m.

8 0
3 years ago
Other questions:
  • A horizontal spring has one end firmly attached to a wall and the other end attached to a mass. The mass can slide freely on a s
    15·1 answer
  • Two equally charged, 1.00 g spheres are placed with 2.00 cm between their centers. when released, each begins to accelerate at 2
    8·1 answer
  • Turn the ignition switch to start and release the key immediately or you could destroy the______________.
    8·1 answer
  • 12)
    13·1 answer
  • Which is a true statement regarding the law of mass balance? A.Solids, gases, and liquids have their own specific equations for
    7·1 answer
  • 1. A tourist accidentally drops a camera from a 40.0 m high bridge and it falls for 2.85 seconds. If g = 9.81 m/s2 and air resis
    10·1 answer
  • What is the mass of an object on the moon whose weight sitting on the Earth is 1900 N?
    14·1 answer
  • Fill in the blanks to complete the sentence.
    6·2 answers
  • Name one non-metal that is a good conductor and why??​
    8·1 answer
  • Orginize it
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!