Answer:
Because 'distance per second' is a velocity, not an acceleration.
Explanation:
Because 'distance per second' is a velocity, not an acceleration. For example, at 1 m/s an object is travelling a distance of 1 metre every second. But a rate of acceleration is a steady increase in velocity. So at 1 m/s^2, an object's velocity is increasing by 1 m/s every second.
<span>The career that is most concerned with the study of radioactive isotopes is chemistry. You need to have passed AP chemistry to actually deal with the isotopes. In a quick reference, isotopes are when the atom has difference amount of neutrons, making the atomic mass differ.</span>
The electric flux through the hole is
.
- Electric flux is the number of electric field lines cutting through the surface and is measured as surface intregal of electric field over that surface
- Mathematically it is given by
where E is the electric field and A is the area. - Gauss's law states that electric flux through closed surface is equal to the 1 / ε₀ times the charge enclosed by that surface which is given by Ф = q / ε₀ where q is the central charge and ε₀ is the permittivity of the medium.
It is given , hollow sphere of radius 10.0cm surrounds a 10.0-μC charge.
The whole surface of hollow sphere 

Area of the hole ( both side ) 

According to Gauss's theorem, the flow from a particular charge in the center is given by

This flux flows through the surface of the sphere, so the flux per unit area which is given by

Flux through area of hole is given by :

Learn about more electric flux here :
brainly.com/question/26289097
#SPJ4
Answer:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7
Explanation:
To calculate the predicted surface elevation of a 50km thick crust above a surface of 2.5km we are given a density of 3 gram per centimeter cube.
The displacement of the material will be calculated by subtracting the surface elevation of 2.5 km from the 50 km thick crust. Therefore 50-25= 47.5 km.
Thus let the density of the material be Pm
50*3= 47.5*Pm
Therefore: Pm= (50*3)/47.5= 3.16gram per centimeter cube
Thus with an average density of 2.8gram per centimeter cube
50*2.8= (50-x)*3.16
(50-x)= (50*2.8)/3.16
50-x=44.3
x=50-44.3= 5.7