1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
STatiana [176]
3 years ago
14

PLEASE HELPPP!!! Where do you think our modern ideas about government came from?

Physics
1 answer:
Vadim26 [7]3 years ago
7 0

Answer:

Our modern ideas about government were influenced by many different ideas and traditions. The biggest influence came from their British heritage. (Remember the colonists WERE British until the American Revolution!)

You might be interested in
A certain shade of blue has a frequency of 7.24 × 1014 Hz. What is the energy of exactly one photon of this light?
ANEK [815]
E = hf

E = 6.63* 10 ⁻³⁴ * 7.24* 10¹⁴

<span>E = 4.80012 × 10⁻¹⁹ J</span>
4 0
3 years ago
Read 2 more answers
Hello guys! Can u please help me with physics. I translated it in English. Can yall help me please how much u can!!
DedPeter [7]

1. Since the body is thrown vertically upward, the only force acting on it as it rises and falls is gravity, which causes a constant downward acceleration with magnitude g = 9.8 m/s². Because this acceleration is constant, we can use the formula

v² - u² = 2a ∆x

where

u = initial speed

v = final speed

a = acceleration

∆x = displacement

At its maximum height, some distance y above the point where the body is launched, the body has zero velocity, so

0² - (20 m/s)² = 2 (-9.8 m/s²) y

Solve for y :

y = (20 m/s)² / (2 (9.8 m/s²)) ≈ 20.4 m

2. Relative to the ground, the body's maximum height is 60 m + 20.4 m ≈ 80.4 m.

3. At any time t ≥ 0, the body's vertical velocity is given by

v = 20 m/s - gt

At the highest point, we have

0 = 20 m/s - (9.8 m/s²) t

and solving for t gives

t = (20 m/s) / (9.8 m/s²) ≈ 2.04 s

4. The body's height y above the ground at any time t ≥ 0 is given by

y = 60 m + (20 m/s) t - 1/2 gt²

Solve for t when y = 0 :

0 = 60 m + (20 m/s) t - 1/2 (9.8 m/s²) t²

Using the quadratic formula,

t = (-b + √(b² - 4ac)) / (2a)

(and omitting the negative root, which gives a negative solution) where a = -1/2 (9.8 m/s²), b = 20 m/s, and c = 60 m. You should end up with

t ≈ 6.09 s

5. At the time found in (4), the body's velocity is

v = 20 m/s - g (6.09 s) ≈ -39.7 m/s

Speed is the magnitude of velocity, so the speed in question is 39.7 m/s.

6 0
3 years ago
Please help! Will mark best answer!!
MA_775_DIABLO [31]
The answer is (A) hope it helps 
7 0
3 years ago
Read 2 more answers
A 12.0-g plastic ball is dropped from a height of 2.50 m. Just as it strikes the floor, it is moving at a speed of 3.20 m/s. How
nalin [4]

Answer:

0·233 J

Explanation:

Given

Mass of the ball = 0·012 kg

Initially the ball is at a height of 2·5 m

As initially the ball is dropped, it's initial velocity will be equal to 0

Therefore initially it has zero kinetic energy and has only potential energy

∴ Initially total mechanical energy of the ball = potential energy of the ball

Initial potential energy of the ball = m × g × h

where

m is the mass of the ball

g is the acceleration due to gravity

h is the height of the ball

∴ Potential energy = 0·012 × 9·8 × 2·5 = 0·294 J

Velocity of the ball after striking the floor = 3·2 m/s

After striking the floor, the total mechanical energy = kinetic energy just after striking the floor

Kinetic energy = 0·5 × m × v²

where m is the mass of the ball

v is the velocity of the ball

∴ Kinetic energy of the ball = 0·5 × 0·012 × 3·2² = 0·061 J

Mechanical energy that is lost = 0·294 - 0·061 = 0·233 J

∴ Mechanical energy that the ball lost during its fall = 0·233 J

6 0
3 years ago
1. A uniform magnetic field is directed vertically upwards. In which direction in this field should an alpha particle be project
max2010maxim [7]

Answer:

1. Fleming's left hand rule

2. It must be projected towards the east

Explanation:

Fleming's left-hand rule states that; When a current-carrying conductor is placed in an external magnetic field, the conductor experiences a force perpendicular to both the field and to the direction of the current flow. This rule was first put forward by John Ambrose Fleming in the later part of the nineteenth century.

Hence if the thumb, fore finger and middle finger of the lefthand are held mutually at right angles to each other; the thumb shows the direction of motion, the fore finger shows the direction of the field while the middle finger shows the direction of the current.

Hence, if the alpha particle is projected eastwards(at right angles) to the uniform magnetic field, it will be deflected southwards in the magnetic field.

3 0
4 years ago
Other questions:
  • What product of the greenhouse effect could lead to more extreme weather events?
    8·1 answer
  • What total distance will a sound wave travel in air in 3.00 seconds at stp?
    14·1 answer
  • Question In picture PLEASE HELP NOW
    10·1 answer
  • What happens to a star after it goes supernova? Does the remnant of the star form a dwarf star, neutron star, black hole, or som
    8·2 answers
  • Can two similar charges attracts each other ? ​
    12·2 answers
  • A circular wire loop of radius 12.1 cm carries a current of 2.16 A. It is placed so that the normal to its plane makes an angle
    9·1 answer
  • HELP ASAP! <br>why is rolling friction much smaller than sliding friction? Also give an example.​
    15·1 answer
  • Help!! Urgent!! What property determines the sequence of layers in the earth?
    6·1 answer
  • Assume that the diagram above shows infrared radiation. How would a diagram showing X-rays be different???????​
    5·1 answer
  • Momentum is conserved it can be transferred but not lost. true or false​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!