1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AVprozaik [17]
3 years ago
12

Aahil, James and merav share £90 in the ratio 1:3:5 how much does aahil get

Mathematics
2 answers:
polet [3.4K]3 years ago
8 0

Answer:

9

Step-by-step explanation:

90 x  1/9 =9

goblinko [34]3 years ago
8 0

Answer:

£10

Step-by-step explanation:

With these 'sharing' ratio questions, first work out the total amount of parts in the ratio:

1:3:5 = 1 + 3 + 5 = 9 parts

Now divide the total amount of parts by the total amount of money shared :

90 / 9 = 10

Now multiply by the appropriate value, in this case, aahil.

aahils value is 1.

1 × 10 = £10

hope this helps :)

You might be interested in
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
1 year ago
Find the area of the shaded region round to the nearest tenth
Alenkinab [10]

Answer: 818.4

Step-by-step explanation:

Using the area of a sector formula, we get the area of the entire sector is (\pi)(27.8^{2})\left(\frac{150}{360} \right).

Using the formula A=\frac{1}{2} ab \sin C, we get the area of the triangle is \frac{1}{2}(27.8)(27.8)(\sin 150^{\circ}).

So, the area of the shaded sector is (\pi)(27.8^{2})\left(\frac{150}{360} \right)-\frac{1}{2}(27.8)(27.8)(\sin 150^{\circ}) \approx \boxed{818.4}

6 0
2 years ago
What is the decimal equivalent of 4/9?
NemiM [27]
What is the decimal equivalent of 4/9?


Answer is: 0.44444444
7 0
2 years ago
Read 2 more answers
Four friends share of a gallon of lemonade equally. What fraction of the gallon of lemonade does each friend get?
UNO [17]

Answer:

if theres four friends and they share the whole gallon equally then each friend would get a quart of lemonade

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
PLEASE ANSWER AS SOON AS POSSIBLE WILL GIVE BRAINLESS TO THE FIRST CORRECT PERSON!!!
egoroff_w [7]

Answer:

Around x = 3 y = 6

Step-by-step explanation:

I'm not sure if you need to round to the nearest whole or hundreth or tenth

8 0
2 years ago
Other questions:
  • What fraction of 1 pint is 1 cup
    15·1 answer
  • Word problem plz help thanks fam 7.04​
    11·2 answers
  • Please help which figure represents an under defined term?
    10·1 answer
  • Just the answer please
    13·2 answers
  • Me.Green tells you that a right Triangle has a hu triangle has a hypotenuse 13 and a leg of 5. She asks you to find the other le
    10·1 answer
  • Correct answer gets brainliest
    13·2 answers
  • If the standard deviation of shear strength measurements for spot welds is 10.5 pounds per square inch (psi), what is the minimu
    6·1 answer
  • Which number is the same as 125,000,000
    15·1 answer
  • Find a ratio that is equivalent to 4 to 5
    11·1 answer
  • Write an inequality for each of the following:
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!