Answer:
(A) The maximum height of the ball is 40.57 m
(B) Time spent by the ball on air is 5.76 s
(C) at 33.23 m the speed will be 12 m/s
Explanation:
Given;
initial velocity of the ball, u = 28.2 m/s
(A) The maximum height
At maximum height, the final velocity, v = 0
v² = u² -2gh
u² = 2gh

(B) Time spent by the ball on air
Time of flight = Time to reach maximum height + time to hit ground.
Time to reach maximum height = time to hit ground.
Time to reach maximum height is given by;
v = u - gt
u = gt

Time of flight, T = 2t

(C) the position of the ball at 12 m/s
As the ball moves upwards, the speed drops, then the height of the ball when the speed drops to 12m/s will be calculated by applying the equation below.
v² = u² - 2gh
12² = 28.2² - 2(9.8)h
12² - 28.2² = - 2(9.8)h
-651.24 = -19.6h
h = 651.24 / 19.6
h = 33.23 m
Thus, at 33.23 m the speed will be 12 m/s
Answer:
69.44kJ
Explanation:
Kinetic energy is expressed as;
KE = 1/2mv^2
m is the mass = 500kg
v is the velocity
Get the velocity;
v = displacement/time
velocity = 2000/120
velcoity = 16.7m/s
Gt the kinetic energy
KE = 1/2 * 500 * 16.7²
KE = 250*277.78
KE = 69,444.4Joules
Since 1000J = 1kJ
69,444.4Joules = 69,444.4/1000
69,444.4Joules = 69.44kJ
Hence the Secretariat's average kinetic energy is 69.44kJ
Answer:
Use the drop-down menus to answer each question.
Which runner finished the 100 m race in the least amount of time?
✔ Ming
Which runner stopped running for a few seconds during the race?
✔ Chloe
At what distance did Anastasia overtake Chloe in the race?
✔ 40 m
Answer:
KE= 1/2mv^2= 1/2*0.0042kg*993m/s= 2.0853joule