1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vesna [10]
3 years ago
14

An object is moving at a speed of 20 m/s and has a kinetic energy of 10,000 J. What is the mass of the object?

Physics
1 answer:
Ratling [72]3 years ago
3 0

Answer:

m=100kg

Explanation:

E=1/2mv^2

10000=1/2m(20)^2

10000=1/2m(400)

10000=1/2m200

50=1/2m

100=m

You might be interested in
Water moves through a constricted pipe in steady, ideal flow. At the
Irina-Kira [14]

A) Speed in the lower section: 0.638 m/s

B) Speed in the higher section: 2.55 m/s

C) Volume flow rate: 1.8\cdot 10^{-3} m^3/s

Explanation:

A)

To solve the problem, we can use Bernoulli's equation, which states that

p_1 + \rho g h_1 + \frac{1}{2}\rho v_1^2 = p_2 + \rho g h_2 + \frac{1}{2}\rho v_2^2

where

p_1=1.75\cdot 10^4 Pa is the pressure in the lower section of the tube

h_1 = 0 is the heigth of the lower section

\rho=1000 kg/m^3 is the density of water

g=9.8 m/s^2 is the acceleration of gravity

v_1 is the speed of the water in the lower pipe

p_2 is the pressure in the higher section

h_2 = 0.250 m is the height in the higher pipe

v_2 is hte speed in the higher section

We can re-write the equation as

v_1^2-v_2^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho} (1)

Also we can use the continuity equation, which state that the volume flow rate is constant:

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-section of the lower pipe, with

r_1 = 3.00 cm =0.03 m is the radius of the lower pipe (half the diameter)

A_2 = \pi r_2^2 is the cross-section of the higher pipe, with

r_2 = 1.50 cm = 0.015 m (radius of the higher pipe)

So we get

r_1^2 v_1 = r_2^2 v_2

And so

v_2 = \frac{r_1^2}{r_2^2}v_1 (2)

Substituting into (1), we find the speed in the lower section:

v_1^2-(\frac{r_1^2}{r_2^2})^2v_1^2=\frac{2(p_2-p_1)+\rho g h_2}{\rho}\\v_1=\sqrt{\frac{2(p_2-p_1+\rho g h_2)}{\rho(1-\frac{r_1^4}{r_2^4})}}=0.638 m/s

B)

Now we can use equation (2) to find the speed in the lower section:

v_2 = \frac{r_1^2}{r_2^2}v_1

Substituting

v1 = 0.775 m/s

And the values of the radii, we find:

v_2=\frac{0.03^2}{0.015^2}(0.638)=2.55 m/s

C)

The volume flow rate of the water passing through the pipe is given by

V=Av

where

A is the cross-sectional area

v is the speed of the water

We can take any point along the pipe since the volume  flow rate is constant, so

r_1=0.03 cm

v_1=0.638 m/s

Therefore, the volume flow rate is

V=\pi r_1^2 v_1 = \pi (0.03)^2 (0.638)=1.8\cdot 10^{-3} m^3/s

Learn more about pressure in a liquid:

brainly.com/question/9805263

#LearnwithBrainly

0 0
3 years ago
What type of System interact with its environment ​
Oksi-84 [34.3K]

Answer:

System management

Explanation:

8 0
3 years ago
These type of power plants are virtually pollution free
galben [10]
Geothermal, Wind ,Solar, and Water turbine.

I hope I helped.
6 0
3 years ago
A spring with force constant of 59 N/m is compressed by 1.3 cm in a hockey game machine. The compressed spring is used to accele
Furkat [3]

Answer:

The puck moves a vertical height of 2.6 cm before stopping

Explanation:

As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.

So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.

Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So

1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².

Substituting the kinetic energy of the puck for the potential energy of the spring, we have

1/2kx² = mgh

h = kx²/2mg

= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)

= 0.009971 Nm/0.38416 N

= 0.0259 m

= 2.59 cm

≅ 2.6 cm

So the puck moves a vertical height of 2.6 cm before stopping

3 0
3 years ago
By how many times will the kinetic energy of a body increase if its speed is tripled? Show by calculation .​
alina1380 [7]

Answer:

9 lần

Explanation:

8 0
3 years ago
Other questions:
  • Gravity is greater when there is
    7·1 answer
  • When heating water, during what temperature range will the temperature cease to change for some time?
    14·2 answers
  • The famous black planet, haunch, has a radius of 106 m, a gravitational acceleration at the surface of 4 m/s2 , and the tangenti
    7·1 answer
  • Each of the space shuttle's main engines is fed liquid hydrogen bya high-pressure pump. Turbine blades inside the pump rotateat
    8·1 answer
  • When a bicycle coasts uphill, it moves slower and slower as it climbs. Why?
    14·2 answers
  • In an equation f = l^2-d^2/4l the intercept is<br>​
    13·1 answer
  • Shoo the fly flaps its wings back and forth 140 times each second. The frequency of the wing flapping is ____ Hz.
    10·1 answer
  • Why is my 2002 dodge caravan 3.3 liter disabling my electric components?
    9·1 answer
  • What causes standing wave?
    6·1 answer
  • A car changes chemical energy from fuel into thermal energy and ________ energy.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!