1). c ... 2). d ... 3). a ... 4). d ... 5). c ... 6). a
7). b-mass ... c-m/s ... d-Newton's 1st ... e-Newton's 2nd
We can calculate the acceleration of Cole due to friction using Newton's second law of motion:

where

is the frictional force (with a negative sign, since the force acts against the direction of motion) and m=100 kg is the mass of Cole and the sled. By rearranging the equation, we find

Now we can use the following formula to calculate the distance covered by Cole and the sled before stopping:

where

is the final speed of the sled

is the initial speed

is the distance covered
By rearranging the equation, we find d:
Answer: The height of the fluid rise is 0.01m
Explanation:
Using the equation
h = (2TcosѲ )/rpg
h= height of the fluid rise
diameter of the tube =3mm
radius of the tube= 3/2 =1.5mm=0.0015
T= surface tension = 600mN/m=0.6N/m
Ѳ = contact angle =
C
p= density =3.7g/cm3= 3700kg/m3
g= acceleration due to gravity =9.8m/s2
h = ( 2*0.6*0.5)/(0.0015*3700*9.8)
h = 0.6/54.39
h= 0.01m
Therefore,the height of the fluid rise is 0.01m
The answer to this question is dropping it on a hard surface.
Answer:
Explanation:
compressions and rarefactions