Answer:
y=-5/2x+4
Step-by-step explanation:
find the slope by using y2-y1/x2-x1
-1-19/2-(-4)
simplify
-20/8
simplify
-5/2
use slope-intercept form, y=mx+b
since we know the slope, find b
plug in one of the ordered pairs into the equation
-1=(-5/2)(2)+b
simplify
-1= -10/2+b
simplify
-1=-5+b
add 5 to both sides
b=4
plug b into y=-5/2x+b
y=-5/2x+4
Split up the integration interval into 4 subintervals:
![\left[0,\dfrac\pi8\right],\left[\dfrac\pi8,\dfrac\pi4\right],\left[\dfrac\pi4,\dfrac{3\pi}8\right],\left[\dfrac{3\pi}8,\dfrac\pi2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac%5Cpi8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi8%2C%5Cdfrac%5Cpi4%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi4%2C%5Cdfrac%7B3%5Cpi%7D8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%7B3%5Cpi%7D8%2C%5Cdfrac%5Cpi2%5Cright%5D)
The left and right endpoints of the
-th subinterval, respectively, are


for
, and the respective midpoints are

We approximate the (signed) area under the curve over each subinterval by

so that

We approximate the area for each subinterval by

so that

We first interpolate the integrand over each subinterval by a quadratic polynomial
, where

so that

It so happens that the integral of
reduces nicely to the form you're probably more familiar with,

Then the integral is approximately

Compare these to the actual value of the integral, 3. I've included plots of the approximations below.
Answer:
17.5 miles
Step-by-step explanation:
6+10+1.5= 17.5
Answer:
-37
Step-by-step explanation:
2 x 3 + 57 -100
we do something called pemdas
We start with multiplying first
2 x 3 = 6
Then we do addition
6+57 = 63
then we subtract
63- 100 = -37
If you mean "factor over the rational numbers", then this cannot be factored.
Here's why:
The given expression is in the form ax^2+bx+c. We have
a = 3
b = 19
c = 15
Computing the discriminant gives us
d = b^2 - 4ac
d = 19^2 - 4*3*15
d = 181
Note how this discriminant d value is not a perfect square
This directly leads to the original expression not factorable
We can say that the quadratic is prime
If you were to use the quadratic formula, then you should find that the equation 3x^2+19x+15 = 0 leads to two different roots such that each root is not a rational number. This is another path to show that the original quadratic cannot be factored over the rational numbers.