9514 1404 393
Answer:
y = x + 4
Step-by-step explanation:
To find the constant in the equation, look in the table for the value of y when x=0. That value is 4, so ...
y = x + 4
Answer:
![{ ({x}^{ \frac{1}{6} } )}^{9} \times \sqrt[6]{ {x}^{9} } \\ {(x)}^{ \frac{9}{6} } \times {(x)}^{ \frac{9}{6}} \\ {(x)}^{ \frac{3}{2} } \times {(x)}^{ \frac{3}{2} } \\{(x)}^{ (\frac{3}{2} + \frac{3}{2})} \\ {(x)}^{ \frac{(3 + 3)}{2}}\\{(x)}^{ (\frac{6}{2})} \\\boxed{{x}^{3}}✓](https://tex.z-dn.net/?f=%20%7B%20%28%7Bx%7D%5E%7B%20%5Cfrac%7B1%7D%7B6%7D%20%7D%20%29%7D%5E%7B9%7D%20%20%5Ctimes%20%20%5Csqrt%5B6%5D%7B%20%7Bx%7D%5E%7B9%7D%20%7D%20%20%5C%5C%20%20%7B%28x%29%7D%5E%7B%20%5Cfrac%7B9%7D%7B6%7D%20%7D%20%5Ctimes%20%20%7B%28x%29%7D%5E%7B%20%5Cfrac%7B9%7D%7B6%7D%7D%20%5C%5C%20%20%7B%28x%29%7D%5E%7B%20%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%5Ctimes%20%20%7B%28x%29%7D%5E%7B%20%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%5C%5C%7B%28x%29%7D%5E%7B%20%28%5Cfrac%7B3%7D%7B2%7D%20%2B%20%20%5Cfrac%7B3%7D%7B2%7D%29%7D%20%20%5C%5C%20%20%7B%28x%29%7D%5E%7B%20%5Cfrac%7B%283%20%2B%203%29%7D%7B2%7D%7D%5C%5C%7B%28x%29%7D%5E%7B%20%28%5Cfrac%7B6%7D%7B2%7D%29%7D%20%20%5C%5C%5Cboxed%7B%7Bx%7D%5E%7B3%7D%7D%E2%9C%93)
<h3><u>x³</u> is the right answer.</h3>
Answer:
multiply the length by the height and the height times 4
The area of the shaded region is 3x^2 + 6x
<h3>How to determine the area of the shaded region?</h3>
The given parameters are:
- Top side of the shaded rectangle = 2x + 7.
- Left side of the shaded rectangle = 2x.
- Top side of the unshaded rectangle = x + 8.
- Left side of the unshaded rectangle = x.
The area of the shaded region is calculated as:
Shaded region area = (Top side of the shaded rectangle * Left side of the shaded rectangle) - (Top side of the unshaded rectangle * Left side of the unshaded rectangle)
Substitute the known values in the above equation
Shaded region area = (2x + 7) * (2x) - (x + 8) * (x)
Evaluate the products
Shaded region area = (4x^2 + 14x) - (x^2 + 8x)
Open the bracket
Shaded region area = 4x^2 + 14x - x^2 - 8x
Collect the like terms
Shaded region area = 4x^2 - x^2 + 14x - 8x
Evaluate the like terms
Shaded region area = 3x^2 + 6x
Hence, the area of the shaded region is 3x^2 + 6x
Read more about areas at:
brainly.com/question/25292087
#SPJ1
Answer:
I am not sure, but I believe it is the last one. Sorry if it's not right.