SOH CAH TOA tells you
  Cos(x) = Adjacent/Hypotenuse
so you can find
  x = arccos(24/28)
  x ≈ 31.0°
        
             
        
        
        
Answer:
a=k1![\sqrt[3]{B}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7BB%7D)
B=125
Step-by-step explanation:
Given :
a=3
B=64
According to question 
a ∝ ![\sqrt[3]{B}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7BB%7D)
therefore 
a=k1 
........Eq(1)
K1=
......Eq(2)
Putting the value of a and B we get in Eq(2) we get 

Putting the value of k1 in Eq(1)
 .......................Eq(3)
putting the value of a=15/4 IN Eq(3) we get
![\frac{15}{4}\ =\frac{3}{4} \sqrt[3]{B}  \\\\\sqrt[3]{B}\ =\ 5\\Cubing\  both\  side\  we\  get\\B=125](https://tex.z-dn.net/?f=%5Cfrac%7B15%7D%7B4%7D%5C%20%3D%5Cfrac%7B3%7D%7B4%7D%20%5Csqrt%5B3%5D%7BB%7D%20%20%5C%5C%5C%5C%5Csqrt%5B3%5D%7BB%7D%5C%20%3D%5C%205%5C%5CCubing%5C%20%20both%5C%20%20side%5C%20%20we%5C%20%20get%5C%5CB%3D125)
 
        
             
        
        
        
Answer:

Step-by-step explanation:
Firstly its necessary to put the autonomous DE in its normal form to get 

To get the critical point we solve 
g - 
 

The critical point is 

and

from the phase portrait we observe that the critical point 
v = 
  is stable

 
        
             
        
        
        
Answer:
4/35
Step-by-step explanation:
1/5*4/7=4/35