I believe you need to solve this using the quadratic formula!
To begin, this is what it is:
x= -b ± <span>√ b^2 - 4ac / 2a
Just plug in what you have in your problem...
2 being a, 13 being b, and -24 being c.
So we get:
x= -13 </span>± <span>√13^2 - 4(2)(-24) / 2(2)
x= -13 </span><span>± √169 - 8 (-24) / 4</span>
<span>x= -13 <span>± √169 + 192 / 4</span>
x= -13 </span>± √<span>361 / 4
The square root of 361 is 19.
So you have: -13 </span><span>± 19 / 4.
Here's where you take the equation </span>-13 <span>± 19 and put the addition and subtraction sign to use.
-13 - 19 = -32
and
-13 + 19 = 6
Now all is left to do is divide the two numbers by 4.
-32/4 = -8
and
6/4 = 3/2
x = -8, 3/2</span>
Given a coordinate point (x, y), the first value of the point represents the value on the x-axis while the second value represent the value on the y-axis.
1.) To express the values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) as a table, we have:
x y
-4 -1
-1 2
1 -4
2 -3
4 3
The values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) expressed as a graph have been attached as graph_1
To express the values (-4, -1), (-1, 2), (1, -4), (2, -3), (4, 3) as a mapping, we have two circles with one labelled x and the other one labelled y.
Inside the circle labelled x are the numbers -4, -1, 1, 2, 4 written vertically and inside the circle labelled y are the numbers -4, -3, -1, 2, 3 written vertically.
There are lines joining from the circle labelled x to the circle labelled y with line joining -4 in circle x to -1 in circle y, -1 in circle x to 2 in circle y, 1 in circle x to -4 in circle y, 2 in circle x to -3 in circle y, 4 in circle x to 3 in circle y.
The domain of the relation is the set of the x-values of the relation, i.e. domain is {-4, -1, 1, 2, 4}.
The range of the relation is the set of the y-values of the relation, i.e. range is {-4, -3, -1, 2, 3}
2.) To express the values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) as a table, we have:
x y
-2 1
-1 0
1 2
2 -4
4 3
The values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) expressed as a graph have been attached as graph_2
To express the values (-2, 1), (-1, 0), (1, 2), (2, -4), (4, 3) as a mapping, we have two circles with one labelled x and the other one labelled y.
Inside
the circle labelled x are the numbers -2, -1, 1, 2, 4 written
vertically and inside the circle labelled y are the numbers -4, 0, 1, 2, 3 written vertically.
There are lines joining from the circle labelled x to the circle labelled y with a line joining -2 in circle x to 1 in circle y, -1 in circle x to 0 in circle y, 1 in circle x to 2 in circle y, 2 in circle x to -4 in circle y, 4 in circle x to 3 in circle y.
The domain of the relation is the set of the x-values of the relation, i.e. domain is {-2, -1, 1, 2, 4}.
The range of the relation is the set of the y-values of the relation, i.e. range is {-4, 0, 1, 2, 3}