Answer:
x-intercepts = 1,2, and 4, y-intercept = -8
Step-by-step explanation:
x^3 - 7x^2 - 14x - 8 in factored form is equal to (x-1)(x-2)(x-4).
Solving for x-intercepts:
- We are actually able to solve for all x-intercepts without the given factor. But since we are given one of the factors, our job becomes much easier.
- Using synthetic division, or long division, we factor out the x-intercept 4. Which leaves us with the polynomial x^2 - 3x + 2.
- From here we can separate the polynomial into two binomials.
- x^2 - 3x + 2 = (x-1)(x-2). Giving us all 3 x-intercepts.
- Using Descartes' rules we can identify before even starting the problem how many real x-intercepts there are (Not needed for this problem).
Solving for y-intercept:
- The y-intercept is always the coefficient that does not have any assigned x-variables.
- The coefficient is -8, thus the y-intercept.
- If unsure of the y-intercept, you can always plug in x = 0. Solving for the y-intercept will give you the value of f(0).
- If there is no coefficient, the y-intercept is equal to zero.
Answer:
Part a. t = 7.29 years.
Part b. t = 27.73 years.
Part c. p = $3894.00
Step-by-step explanation:
The formula for continuous compounding is: A = p*e^(rt); where A is the amount after compounding, p is the principle, e is the mathematical constant (2.718281), r is the rate of interest, and t is the time in years.
Part a. It is given that p = $2000, r = 2.5%, and A = $2400. In this part, t is unknown. Therefore: 2400 = 2000*e^(2.5t). This implies 1.2 = e^(0.025t). Taking natural logarithm on both sides yields ln(1.2) = ln(e^(0.025t)). A logarithmic property is that the power of the logarithmic expression can be shifted on the left side of the whole expression, thus multiplying it with the expression. Therefore, ln(1.2) = 0.025t*ln(e). Since ln(e) = 1, and making t the subject gives t = ln(1.2)/0.025. This means that t = 7.29 years (rounded to the nearest 2 decimal places)!!!
Part b. It is given that p = $2000, r = 2.5%, and A = $4000. In this part, t is unknown. Therefore: 4000 = 2000*e^(2.5t). This implies 2 = e^(0.025t). Taking natural logarithm on both sides yields ln(2) = ln(e^(0.025t)). A logarithmic property is that the power of the logarithmic expression can be shifted on the left side of the whole expression, thus multiplying it with the expression. Therefore, ln(2) = 0.025t*ln(e). Since ln(e) = 1, and making t the subject gives t = ln(2)/0.025. This means that t = 27.73 years (rounded to the nearest 2 decimal places)!!!
Part c. It is given that A = $5000, r = 2.5%, and t = 10 years. In this part, p is unknown. Therefore 5000 = p*e^(0.025*10). This implies 5000 = p*e^(0.25). Making p the subject gives p = 5000/e^0.25. This means that p = $3894.00(rounded to the nearest 2 decimal places)!!!
Answer:
Equivalent representations of percent problems
Step-by-step explanation:
To find this out, divide 35 by 60:
35/60 = .583333333333
So 35 is 58.3% of 60.
Hope this helps!
Well 85% of 25 is 21.25. So the closest ones would be 20 or 22. Well let's check out the difference's. 21.25-20= 1.25.....22-21.25=.75. well clearly .75 is smaller than 1.25 so your answer would be 22. 85% of 25 is closest to 22.