A:PN
C is diameter
MN =2*PN
Answer:
J.
Step-by-step explanation:
There is no solution because these are parallel lines.
Parallel lines never intersect and so they have no solution.
Rewrite the limand as
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = (1 - sin(<em>x</em>)) / (cos²(<em>x</em>) / sin²(<em>x</em>))
… = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / cos²(<em>x</em>)
Recall the Pythagorean identity,
sin²(<em>x</em>) + cos²(<em>x</em>) = 1
Then
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = ((1 - sin(<em>x</em>)) sin²(<em>x</em>)) / (1 - sin²(<em>x</em>))
Factorize the denominator; it's a difference of squares, so
1 - sin²(<em>x</em>) = (1 - sin(<em>x</em>)) (1 + sin(<em>x</em>))
Cancel the common factor of 1 - sin(<em>x</em>) in the numerator and denominator:
(1 - sin(<em>x</em>)) / cot²(<em>x</em>) = sin²(<em>x</em>) / (1 + sin(<em>x</em>))
Now the limand is continuous at <em>x</em> = <em>π</em>/2, so

Answer:
a) 4⁻³ = 1/64 = 0.015625
b)13⁻² = 1/169 = 0.0059171598
c)(-3)⁻² = 1/-3² = 0.1111111111
Step-by-step explanation:
To solve the question above, when we have an integer ( positive or negative) that is raised to a negative power, this means the reciprocal of that integer raised to the positive power
Example:
a⁻ⁿ = 1/aⁿ
a) 4⁻³ = 1/4³
= 1/(4 × 4 × 4)
= 1/64
= 0.015625
b) 13⁻² = 1/13²
= 1/(13 × 13)
= 1/169
= 0.0059171598
c)(-3)⁻² = 1/-3²
= 1/(-3 × -3)
= 1/9
= 0.1111111111