1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Amanda [17]
3 years ago
6

What is the perimeter of ^PQR with vertices P(-2,9) Q(7,-3) and R(-2,-3) in the coordinate plane?

Mathematics
1 answer:
lukranit [14]3 years ago
6 0
Do I need to show my work?
You might be interested in
Write the number equal to 5 tens and 13 ones.
choli [55]
I would probaly have to say $63
4 0
3 years ago
Read 2 more answers
Distribution of Responses of 2,000 Residents to Two Library Funding Questions
Softa [21]

Answer:

25%

Step-by-step explanation:

16% answered "local government" to question 2.

9% answered "private donations" to question 2.

So the probability that a randomly selected response is either "local government" or "private donations" is 16% + 9% = 25%.

7 0
3 years ago
What are the steps to get 1/7
madreJ [45]

1/7 is your answer. It can't be reduced any further. If there is supposed to be a problem, next time, add it.

8 0
3 years ago
Which of the following is a area of the special trepezoid if ab=19,cd=19 and the height is 14
tankabanditka [31]

As, Opposite side of Special trapezoid is equal.So, it will be a Parallelogram.

ab=c d= 19 units

Height of Trapezoid = 14 units

Area of Trapezoid =  \frac{1}{2} \times {\text{Sum of parallel sides}} \times {\text{Perpendicular Distance between them}}

  =\frac{1}{2}\times (19+19) \times 14\\\\ =\frac{1}{2} \times 38 \times 14\\\\ = 19 \times 14\\\\= 266

So, Area of Trapezoid = 266 square units

You, can use the formula for finding the area of parallelogram,which is = Base on which perpendicular is drawn × Length of Altitude

= 19 × 14

= 266 square units

5 0
4 years ago
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
Other questions:
  • I need help with this multiple choice question
    9·2 answers
  • Expand and simplify 5(2x-1) + 2(3x-6)
    6·1 answer
  • If sin y° = 9 divided by c. and tan y° = 9 divided by d. ,what is the value of cos y°?
    15·2 answers
  • What is the surface area, in square inches, of a 8-inch cube?
    7·2 answers
  • Which graph represents the solution set of the compound inequality Negative 4 less-than-or-equal-to 3x minus 1 and 2 x + 4 less-
    15·1 answer
  • If P(a)=0.60 and P(b)=0.30, then a and b are independent events if
    8·2 answers
  • Factorize (3r-2p)^2 - (3d-2e)^2
    11·1 answer
  • 1/2x=-11 aswdcfvgbhnjmkjhugyftdrtfygbuhnjkm
    5·2 answers
  • What is 21 grains to grams?
    14·1 answer
  • Interpreting linear expressions<br> 5 stars if answer is correct<br><br> have a splendid day
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!