Answer:
i dont know how your teacher teaches it but in the first question take away the y after the 25. number 2 the start equation would be 55=2x+25 then you would subtract 25 from each side to get 30=2x, the divide by to to get x=15 or she made 15 calls. number 3 is correct.
i hope this helps
Answer:
5,589,000
Step-by-step explanation:
5.589 x 1,000,000=
5,589,000
Answer: -6.6 and -161.5
Step-by-step explanation: 44.22/-6.7=-6.7 -6.46/.04=-161.5 <——- not to sure about that one
The identity Sin(α)/Tan(α) = Cos(α) is valid
Trigonometry is study of triangles. All trigonometric ratios are defined using the sides of the right triangle, such as an adjacent side, opposite side, and hypotenuse side. Three major of them are as follows :-
Sine Function:
sin(θ) = Opposite / Hypotenuse
Cosine Function:
cos(θ) = Adjacent / Hypotenuse
Tangent Function:
tan(θ) = Opposite / Adjacent
Lets prove this identity by proceeding with the LHS
= Sin(α)/Tan(α)
= Sin(α)/ (Sin(α)/Cos(α)) (Tan(α) = Sin(α)/Cos(α))
= Sin(α)xCos(α) / Sin(α)
= Cos(α)
Hence verified
Learn more about Trigonometric Ratios here :
brainly.com/question/13776214
#SPJ4
Answer:
The P value indicates that the probability of a linear correlation coefficient that is at least as extreme is 0.3% which is not significant (at α = 0.05), so there is insufficient evidence to conclude that there is a linear correlation between weight and consumption. of highway fuel in cars.
Step-by-step explanation:
We have that the correlation coefficient shows the relationship between the weights and amounts of road fuel consumption of seven types of car, now the P value establishes the importance of this relationship. If the p-value is lower than a significance level (for example, 0.05), then the relationship is said to be significant, otherwise it would not be so, this case being 0.003 not significant.
The statement would be the following:
The P value indicates that the probability of a linear correlation coefficient that is at least as extreme is 0.3% which is not significant (at α = 0.05), so there is insufficient evidence to conclude that there is a linear correlation between weight and consumption. of highway fuel in cars.