<span>x² + y² + 14x − 4y − 28 = 0
x² +14x +y² - 4y =28
x²+2*7x +7² -7² + y² - 2*2y +2² - 2² = 28
(x+7)² + (y-2)² -7²-2² =28
</span>(x+7)² + (y-2)²=28+49+4
(x+7)² + (y-2)² =81 is the answer.
Answer: 5x-30-9
-159
Step-by-step explanation:
-159 is the answer
Answer:
The measure of the angle R is equal to the measure of angle T
Step-by-step explanation:
Split up the integration interval into 4 subintervals:
![\left[0,\dfrac\pi8\right],\left[\dfrac\pi8,\dfrac\pi4\right],\left[\dfrac\pi4,\dfrac{3\pi}8\right],\left[\dfrac{3\pi}8,\dfrac\pi2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac%5Cpi8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi8%2C%5Cdfrac%5Cpi4%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi4%2C%5Cdfrac%7B3%5Cpi%7D8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%7B3%5Cpi%7D8%2C%5Cdfrac%5Cpi2%5Cright%5D)
The left and right endpoints of the
-th subinterval, respectively, are


for
, and the respective midpoints are

We approximate the (signed) area under the curve over each subinterval by

so that

We approximate the area for each subinterval by

so that

We first interpolate the integrand over each subinterval by a quadratic polynomial
, where

so that

It so happens that the integral of
reduces nicely to the form you're probably more familiar with,

Then the integral is approximately

Compare these to the actual value of the integral, 3. I've included plots of the approximations below.
Solving for <em>Angles</em>

* Do not forget to use the <em>inverse</em> function towards the end, or elce you will throw your answer off!
Solving for <em>Edges</em>

You would use this law under <em>two</em> conditions:
- One angle and two edges defined, while trying to solve for the <em>third edge</em>
- ALL three edges defined
* Just make sure to use the <em>inverse</em> function towards the end, or elce you will throw your answer off!
_____________________________________________
Now, JUST IN CASE, you would use the Law of Sines under <em>three</em> conditions:
- Two angles and one edge defined, while trying to solve for the <em>second edge</em>
- One angle and two edges defined, while trying to solve for the <em>second angle</em>
- ALL three angles defined [<em>of which does not occur very often, but it all refers back to the first bullet</em>]
* I HIGHLY suggest you keep note of all of this significant information. You will need it going into the future.
I am delighted to assist you at any time.