Add up all the sides of the rectangle
a) You are told the function is quadratic, so you can write cost (c) in terms of speed (s) as
... c = k·s² + m·s + n
Filling in the given values gives three equations in k, m, and n.

Subtracting each equation from the one after gives

Subtracting the first of these equations from the second gives

Using the next previous equation, we can find m.

Then from the first equation
[tex]28=100\cdot 0.01+10\cdot (-1)+n\\\\n=37[tex]
There are a variety of other ways the equation can be found or the system of equations solved. Any way you do it, you should end with
... c = 0.01s² - s + 37
b) At 150 kph, the cost is predicted to be
... c = 0.01·150² -150 +37 = 112 . . . cents/km
c) The graph shows you need to maintain speed between 40 and 60 kph to keep cost at or below 13 cents/km.
d) The graph has a minimum at 12 cents per km. This model predicts it is not possible to spend only 10 cents per km.
I also worked it out but I got -5/3
2(6p-5) ≥ 3(p-8) -1
12p-10 ≥ 3p-24-1
12p-10 ≥ 3p-25
12p-3p ≥ -25+10
9p ≥ -15
-15/9
P ≥ -5/3
The gross profit margin is calculated using the following rule:
gross profit margin = total profit / total sales
Now, we need to get the values of total profit and total sale:
total profit = <span>9*8-(40+8)=24$
total sales = 9*8 = 72$
Now, we will substitute in the above equation:
gross profit margin = 24/72 = 1/3 = 0.3333334
% = 0.33333334*100 = 33.3334%</span>
Answer:The answer is given by :
[ The amount of material ] / [The number of pillows made ] = 16 / 12 = 4 /3 = ( 1 + 1/3 ) yds per pillow
So the answer lies between the integers 1 and 2
Step-by-step explanation: