Answer:
nxxjdndndndkdkd
snns
Step-by-step explanation:
dndn ecochin
divination funk bunk
byhhbjdnd
nsnndbddnnjdjjjjkk
djsjdndnsndn
Step-by-step explanation:
3x + 5y = 50
x + 5y = 31
use substitution
x = 31-5y
3(31-5y) +5y = 50
93 -15y + 5y = 50
93 - 10y = 50
--10y = -43
y = 43/10 = $4.30 for kids
now solve for x
x + 5(4.30) = 31
x + 21.5 = 31
x = $9.5 for adults
<u>Given</u>:
The given triangle is a similar triangle.
The length of the hypotenuse is 18 units.
The length of the leg is a.
The length of the part of the hypotenuse is 16 units.
We need to determine the proportion used to find the value of a.
<u>Proportion to find the value of a:</u>
We shall find the proportion to determine the value of a using the geometric mean leg rule.
Applying the leg rule, we have;

Substituting the values of hypotenuse, leg and part, we get;

Thus, the proportion used to find the value of a is 
Hence, Option D is the correct answer.
The answer is: 3 3/8 sq ft so C
Answer:
a. 
b. 
Step-by-step explanation:
The initial value problem is given as:

Applying laplace transformation on the expression 
to get ![L[{y+y'} ]= L[{7 + \delta (t-3)}]](https://tex.z-dn.net/?f=L%5B%7By%2By%27%7D%20%5D%3D%20L%5B%7B7%20%2B%20%5Cdelta%20%28t-3%29%7D%5D)

Taking inverse of Laplace transformation
![y(t) = 7 L^{-1} [ \dfrac{1}{(s+1)}] + L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{(s+1)-s}{s(s+1)}] +L^{-1} [\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7L^{-1} [\dfrac{1}{s}-\dfrac{1}{s+1}] + L^{-1}[\dfrac{e^{-3s}}{s+1}] \\ \\ y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=y%28t%29%20%3D%207%20L%5E%7B-1%7D%20%5B%20%5Cdfrac%7B1%7D%7B%28s%2B1%29%7D%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207L%5E%7B-1%7D%20%5B%5Cdfrac%7B%28s%2B1%29-s%7D%7Bs%28s%2B1%29%7D%5D%20%2BL%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207L%5E%7B-1%7D%20%5B%5Cdfrac%7B1%7D%7Bs%7D-%5Cdfrac%7B1%7D%7Bs%2B1%7D%5D%20%2B%20L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%5C%5C%20%5C%5C%20y%28t%29%20%3D%207%20%5B1-e%5E%7B-t%7D%20%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
![L^{-1}[\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
![L^{-1}[\dfrac{1}{s+1}] = e^{-t} = f(t) \ then \ by \ second \ shifting \ theorem;](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7B1%7D%7Bs%2B1%7D%5D%20%3D%20e%5E%7B-t%7D%20%20%3D%20f%28t%29%20%5C%20then%20%5C%20by%20%5C%20second%20%5C%20shifting%20%5C%20theorem%3B)
![L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{f(t-3) \ \ \ t>3} \atop {0 \ \ \ \ \ \ \ \ \ t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%3D%20%5Cleft%20%5C%7B%20%7B%7Bf%28t-3%29%20%5C%20%5C%20%5C%20t%3E3%7D%20%5Catop%20%7B0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20t%20%3C3%7D%7D%20%5C%20%5C%20%5C%20%20%5Cright.)
![L^{-1}[\dfrac{e^{-3s}}{s+1}] = \left \{ {{e^{(-t-3)} \ \ \ t>3} \atop {0 \ \ \ \ \ \ \ \ \ t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D%20%3D%20%5Cleft%20%5C%7B%20%7B%7Be%5E%7B%28-t-3%29%7D%20%5C%20%5C%20%5C%20t%3E3%7D%20%5Catop%20%7B0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%20%5C%20t%20%3C3%7D%7D%20%5C%20%5C%20%5C%20%20%5Cright.)

= 
Recall that:
![y(t) = 7 [1-e^{-t} ] + L^{-1} [\dfrac{e^{-3s}}{s+1}]](https://tex.z-dn.net/?f=y%28t%29%20%3D%207%20%5B1-e%5E%7B-t%7D%20%5D%20%2B%20L%5E%7B-1%7D%20%5B%5Cdfrac%7Be%5E%7B-3s%7D%7D%7Bs%2B1%7D%5D)
Then


