Let's solve this problem step-by-step.
First of all, let's establish that supplementary angles are two angles which add up to 180°.
Therefore:
Equation No. 1 -
x + y = 180°
After reading the problem, we can convert it into an equation as displayed as the following:
Equation No. 2 -
3x - 8 + x = 180°
Now let's make (y) the subject in the first equation as it is only possible for (x) to be the subject in the second equation. The working out is displayed below:
Equation No. 1 -
x + y = 180°
y = 180 - x
Then, let's make (x) the subject in the second equation & solve as displayed below:
Equation No. 2 -
3x - 8 + x = 180°
4x = 180 + 8
x = 188 / 4
x = 47°
After that, substitute the value of (x) from the second equation into the first equation to obtain the value of the other angle as displayed below:
y = 180 - x
y = 180 - ( 47 )
y = 133°
We are now able to establish that the value of the two angles are as follows:
x = 47°
y = 133°
In order to determine the measure of the bigger angle, we will need to identify which of the angles is larger.
133 is greater than 47 as displayed below:
133 > 47
Therefore, the measure of the larger angle is 133°.
1. C(x, y) = (7.3, –3.9)
2. C(x, y) = (17, –1.5)
Solution:
Question 1:
Let the points are A(3, –5) and B(19, –1).
C is the point that on the segment AB in the fraction .
Point divides segment in the ratio formula:
Here, and m = 3, n = 8
C(x, y) = (7.3, –3.9)
Question 2:
Let the points are A(3, –5) and B(19, –1).
C is the point that on the segment AB in the fraction .
Point divides segment in the ratio formula:
Here, and m = 7, n = 1
C(x, y) = (17, –1.5)
Answer:
cubic units
Step-by-step explanation:
We are to find the volume of the solid of revolution formed by rotating about the x--axis the region bounded by the given curves.
f(x)=2x+1, y=0, x=0, x=4.
The picture is given as shaded region.
This is rotated about x axis
Limits for x are already given as 0 and 4
f(x) is a straight line
The solid formed would be a cone
Volume =
10) Mean 52 Mode No Mode (all shown only once) Median 48 Range 75