Given the following constraints, find the maximum and minimum values for z. Constraints: 2x−y≤124x+2y≥0x+2y≤6 Optimization Equat ion: z=2x+5y
1 answer:
Answer:
Minimum = 0
Maximum = 15
Step-by-step explanation:
Given
Optimization Equation:
Constraints:
Required
The maximum and the minimum values of z
To do this, we make use of graphical method.
Plot the constraints on a graph (see attachment)
Get the corner points from the points.
These are the points where
So, we have:
Substitute these points in the optimization equation:
So, the values are:
Minimum = 0
Maximum = 15
You might be interested in
5 3/8 rounds to 5, 4 7/10 rounds to 5 Your estimated sum is 10
May be another Lala La La La La La La La La La La La La La La La La La La la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la la
That's easy you just need to listen in school to answer it
Answer:
23/16
Step-by-step explanation:
3*8/2*8=24/16-1/16=23/16
Answer:
31.5 ft
Step-by-step explanation:
Use the Pythagorean Theorem
a² + b² = c²
Plug in the knowns
a² + 23² = 39²
Subtract 23² from both sides
a² = 39² - 23²
a² = 1521 - 529
a² = 992
Take the square root of both sides
a = 31.496031496
Rounded
a = 31.5 ft