Answer: g = acceleration = A*w^2 = A*(2*pi*fb)^2.
Explanation:
The ball bounces when the acceleration of the ball exceeds that of gravity. If A and fb are measured at that point, g = acceleration = A*w^2 = A*(2*pi*fb)^2.
It’s a dynamic load.
Hopes this helps :)
Answer:
18000 J
Explanation:
From the question given above, the following data were obtained:
At point 4:
Mass of cart = 600 Kg
Velocity of cart (v) = 7.745 m/s
Kinetic energy (KE) =?
KE = ½mv²
KE = ½ × 600 × 7.745²
KE = 300 × 7.745²
KE ≈ 18000 J
Therefore, the mechanical energy of the cart at point 4 is 18000 J
Answer:
LED run before the batteries are depleted is 3.87 hours
Explanation:
given data
battery = 4 AA
battery is rated = 1.2V, 2550 mAh
power = 3 W
efficient = 95%
to find out
How long will the LED run before the batteries are depleted
solution
we consider here power delivered by battery is = x
so power = x × efficient
3 = x 95%
x = 3.15 W
and
voltage by 4 battery is = 4 × 1.2 = 4.8 V
so current will be = 
current = 
current = 0.6577 A
so total discharge hours = 
total discharge hours = 
time = 3.87 hours
so LED run before the batteries are depleted is 3.87 hours