Answer:
x=2,y=0
(You did not provide enough information for me to know what to do with said equations, so I'm assuming it was System of Equations.)
Initial salary = $50,000 .
Rate of raise = 5% each year.
Therefore, each next year salary would be 105% that is 1.05 times.
5% of 50,000 = 0.05 × 50000 = 2500.
Therefore raise is $2500 each year.
According to geometric sequence first term 50000 and common ratio 1.05.
Applying geometric sequence formula

1) 
2) In order to find salary in 5 years we need to plug n=5, we get

= 50000(1.21550625)
<h3>=$60775.3125.</h3>
3) In order to find the total salary in 10 years we need to apply sum of 10 terms formula of a geometric sequence.

Plugging n=10, a = 50000 and r= 1.05.


= 628894.62678.
<h3>Therefore , you will have earned $ 628894.62678 in total salary by the end of your 10th year.</h3>
Answer:

Using the frequency distribution, I found the mean height to be 70.2903 with a standard deviation of 3.5795
Step-by-step explanation:
Given
See attachment for class
Solving (a): Fill the midpoint of each class.
Midpoint (M) is calculated as:

Where
Lower class interval
Upper class interval
So, we have:
Class 63-65:

Class 66 - 68:

When the computation is completed, the frequency distribution will be:

Solving (b): Mean and standard deviation using 1-VarStats
Using 1-VarStats, the solution is:


<em>See attachment for result of 1-VarStats</em>