Answer:
you need to send us the figure
Explanation:
Answer:
Niels Bohr, refined the model of an atom by proposing a quantized shell structure atomic model in order to describe how the electrons are able to maintain stable orbits around the nucleus
Based on the predictions of classical mechanics the electron motion of the Rutherford model was unstable as the electrons where expected to have lost some energy during motion and thus having to come rest in the nucleus
According to the modification by Neils Bohr in 1913, electrons move in shells or orbits of fixed energy and emission of electromagnetic radiation takes place only when electrons changes the orbit in which they move
Explanation:
Answer is (4) - Pb.
According to the reactivity series of elements
- the elements which are above the hydrogen are more reactive than hydrogen.
- the elements which are below the hydrogen are less reactive than hydrogen.
Among the given choices, only Pb is placed above the hydrogen in the reactivity series and rest are below the hydrogen.
Hence, Pb is more active than hydrogen.
Answer: 1.Sulfuric acid is a catalyst
2. Vanadium(v) oxide is a catalyst
During the electrolysis of the molten lithium chloride, the Lithium ions (Li⁺) at the cathode undergoes reduction, and the electron configuration of lithium becomes 1s²2s¹.
<h3>What is electrolysis?</h3>
Electrolysis can be described as the process in which the electric current is passed through the chemical compound to break them. In this process, the atoms and ions are interchanged by the addition or removal of electrons.
The ions are allowed to move freely in this process. When an ionic compound is melted or dissolved in water then ions are produced which can move freely.
During the electrolysis of molten lithium chloride, the lithium ions reach the cathode and accept the electrons while chloride ions reach at anode and loss electrons to become chlorine gas.
At anode : 2 Cl⁻ → Cl₂ + 2e⁻
At cathode: 2 Li⁺ + 2e⁻ → Li
Learn more about electrolysis, here:
brainly.com/question/12054569
#SPJ1