The answer is 62.00 g/mol.
Solution:
Knowing that the freezing point of water is 0°C, temperature change Δt is
Δt = 0C - (-1.23°C) = 1.23°C
Since the van 't Hoff factor i is essentially 1 for non-electrolytes dissolved in water, we calculate for the number of moles x of the compound dissolved from the equation
Δt = i Kf m
1.23°C = (1) (1.86°C kg mol-1) (x / 0.105 kg)
x = 0.069435 mol
Therefore, the molar mass of the solute is
molar mass = 4.305g / 0.069435mol = 62.00 g/mol
Answer:
Explanation:
A group of two or more smaller molecules is the correct answer
Answer:
Mg S2 O3
Explanation:
.691 g of Mg is .284 mole
1.84 g of S is .5739 mole
1.365 g of O is .8531 mole you can see the ratio is ~ 1 :2 :3
Mg S2 O3