Answer and Explanation:
<em>IMPORTANT NOTE: Due to technical problems, you will find t</em><em>he answer and the complete explanation</em><em> in the attached file.</em>
Answer:
What are stinkhorns? Stinkhorns are mushrooms that are found from the tropics to more temperate regions such as Wisconsin. They can suddenly appear in mulch, lawns, and areas with bare soil. These visually-shocking fungi get their common name from their characteristic, unpleasant odor. Although they are often unwanted additions to home gardens, stinkhorns do not cause plant disease. Because stinkhorns can grow on dead organic material, they actually are beneficial in that they contribute to the recycling of plant debris into nutrients that improve soil fertility and can be used by garden plants.
What do stinkhorns look like? Stinkhorns grow into various shapes, but they are bestknown for looking like horns or penises. A few species grow several appendages, resulting in an octopus-like appearance. Some species have a veil attached below the cap that resembles a lacey skirt flowing from the mushroom’s hollow stalk. Stinkhorns can range in color from white, beige, and olive to bright orange or red with black accents. The tips of mature stinkhorns are usually coated in a spore-containing slime. Gardeners often discover immature stinkhorns as they dig in the soil. The immature forms appear as whitish to pink or purple, egg-shaped masses. Stinkhorns develop rapidly sometimes growing up to four to six inches per hour, and can generate enough force to break through asphalt.
Where do stinkhorns come from? Stinkhorns are often first introduced into a garden in organic materials (e.g., soils and mulches) that contain microscopic hyphae (i.e., fungal threads) of stinkhorn fungi. Once stinkhorns mature, they produce a pungent, off-putting odor that is reminiscent of rotting flesh or dung. This smell may disgust people, but it attracts insects, particularly flies. Flies and other insects eat the slimy material at the tips of stinkhorns and carry spores in this slime to new locations as they move around in the environment. In many ways, this process is comparable to the distribution of pollen by bees (but of course without the more appealing scents associated with most flowers).
Answer:
organisms have the amazing ability to make (produce) their own energy-rich food molecules from sunlight and simple chemicals.
Explanation:
Two of these options are correct (A & E)
So, the correct option is D.
<h3>About ADH/Vasopressin:</h3>
- Other name for ADH is arginine vasopressin.
- It is a hormone produced by the brain's hypothalamus and kept in the posterior pituitary gland.
- It instructs the kidneys on how much water to hold onto.
- The amount of water in your blood is continuously regulated and balanced by ADH.
- Your blood's volume and pressure increase with higher water concentration.
- ADH helps to sustain water metabolism along with osmotic sensors and baroreceptors.
- The concentration of particles in your blood causes osmotic sensors in the hypothalamus to respond.
- Carbon dioxide, sodium, potassium, chloride, and other chemicals are among these particles.
- These sensors and baroreceptors tell your kidneys to store or release water to maintain a healthy range of these substances when particle concentration is out of balance or blood pressure is too low.
- They also control how thirsty your body feels.
- The particular nerve cells that make anti-diuretic hormone are located in the hypothalamus, a region at the base of the brain.
- The hormone is sent by the nerve cells to the posterior pituitary gland, where it is released into the bloodstream, via their nerve fibers (axons).
- By influencing the kidneys and blood arteries, anti-diuretic hormone aids in maintaining blood pressure.
- Its primary function is to decrease the volume of water excreted in the urine, so conserving your body's fluid volume.
- This is achieved by permitting a specific region of the kidney to enable water from the urine to be reabsorbed into the body.
- As a result, the bloodstream is replenished with more water, urine concentration increases, and water loss is decreased.
<h3> Aquaporins and ADH:</h3>
- Antidiuretic hormone levels above a certain threshold narrow (constrict) blood arteries, raising blood pressure.
- The only way to fully recover from a lack of bodily fluid (dehydration) is by drinking more water.
- The aquaporin 2 protein is made according to instructions from the AQP2 gene.
- The water molecules are transported across cell membranes by this protein, which creates a channel.
- Collecting ducts, a network of tiny tubes that reabsorb water from the kidneys into the bloodstream, are found in the kidneys where it is discovered.
- In order to keep the body's water balance in check, the aquaporin 2 water channel is crucial.
- A hormone known as vasopressin or antidiuretic hormone regulates the positioning of these channels (ADH).
- The body creates more ADH when the amount of fluid consumed is low or when there is a lot of fluid loss (for instance, through sweating).
- Aquaporin 2 water channels are ultimately inserted into the membrane of collecting duct cells by this hormone, which sets off chemical events.
- Due to the re-absorption of water into the bloodstream made possible by these channels, the urine is more concentrated.
- Less ADH is created when fluid intake is sufficient. Aquaporin 2 water channels are taken out of the collecting duct cells' membrane in the absence of signals from ADH.
- During these times, the urine is more diluted and less water is reabsorbed into the bloodstream.
Disclaimer: The given question was incomplete on the portal. Here is the complete question.
Question: ADH or Vasopressin...
A. Promotes the insertion of aquaporins (specifically AQP2) into the apical membrane of the collecting duct cells
B. Promotes the insertion of aquaporins (specifically AQP3 and AQP4) into the basolateral membrane of the collecting duct cells
C. All of these options are correct
D. Two of these options are correct
E. When released, increases the osmolarity of the excreted urine
Learn more about "ADH" :
brainly.com/question/25921436
#SPJ4
Answer:
Glycosidic Bond
Explanation:
Glycosidic bond is used to form disaccharides. When two monosaccharides joins together, a glycosidic bond is formed resulting in a disaccharide.