1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hichkok12 [17]
3 years ago
11

What is the slope of the line that passes through the points (-2, 2), and (-4, -2)? 1/2, 2, -2, -1/2

Mathematics
2 answers:
Paladinen [302]3 years ago
8 0

Answer:

1/2

Step-by-step explanation:

if u make a slope triangle you get 4/2 which equals 1/2

trapecia [35]3 years ago
6 0
The slope formula is y1-y2/x1-x2 so 2-(-2)/-2-(-4) which is 4/2 which means the slope is 2
Hope that helped :)
You might be interested in
X y
Strike441 [17]

Answer:

1

Step-by-step explanation:

3-1=2

2-1=1

1-1=0

From this we can see that the constant rate of change is 1.

Hope it helps <3

6 0
3 years ago
HELP DUE IN 5 MINS!!!
UkoKoshka [18]

What are the units? Tell me the units so I can solve this please.

3 0
2 years ago
Read 2 more answers
Find the coordinates of the midpoint of the segment whose endpoints are R(9, 3) and S(-1, -9).
amm1812

Answer:

(4, -3 )

General Formulas and Concepts:

<u>Pre-Algebra I</u>

  • Order of Operations: BPEMDAS

<u>Algebra I</u>

  • Midpoint Formula: (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} )

Step-by-step explanation:

<u>Step 1: Define</u>

R (9, 3)

S (-1, -9)

<u>Step 2: Find midpoint</u>

  1. Substitute:                    (\frac{9-1}{2}, \frac{3-9}{2} )
  2. Subtract:                       (\frac{8}{2}, \frac{-6}{2} )
  3. Divide:                          (4, -3 )
4 0
2 years ago
_ 5x^20-7x^10+15 in quadratic form
Tpy6a [65]

Answer:

x = -(sqrt(349) - 7)^(1/10)/10^(1/10) or x = (sqrt(349) - 7)^(1/10)/10^(1/10) or x = -((-1)^(1/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(1/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(2/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(2/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(3/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(3/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(4/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(4/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -(1/10 (-7 - sqrt(349)))^(1/10) or x = (1/10 (-7 - sqrt(349)))^(1/10) or x = -(-1)^(1/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = (-1)^(1/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = -(-1)^(2/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = (-1)^(2/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = -(-1)^(3/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = (-1)^(3/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = -(-1)^(4/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = (-1)^(4/5) (1/10 (-7 - sqrt(349)))^(1/10)

Step-by-step explanation:

Solve for x:

-5 x^20 - 7 x^10 + 15 = 0

Substitute y = x^10:

-5 y^2 - 7 y + 15 = 0

Divide both sides by -5:

y^2 + (7 y)/5 - 3 = 0

Add 3 to both sides:

y^2 + (7 y)/5 = 3

Add 49/100 to both sides:

y^2 + (7 y)/5 + 49/100 = 349/100

Write the left hand side as a square:

(y + 7/10)^2 = 349/100

Take the square root of both sides:

y + 7/10 = sqrt(349)/10 or y + 7/10 = -sqrt(349)/10

Subtract 7/10 from both sides:

y = sqrt(349)/10 - 7/10 or y + 7/10 = -sqrt(349)/10

Substitute back for y = x^10:

x^10 = sqrt(349)/10 - 7/10 or y + 7/10 = -sqrt(349)/10

Taking 10^th roots gives (sqrt(349)/10 - 7/10)^(1/10) times the 10^th roots of unity:

x = -(1/10 (sqrt(349) - 7))^(1/10) or x = (1/10 (sqrt(349) - 7))^(1/10) or x = -(-1)^(1/5) (1/10 (sqrt(349) - 7))^(1/10) or x = (-1)^(1/5) (1/10 (sqrt(349) - 7))^(1/10) or x = -(-1)^(2/5) (1/10 (sqrt(349) - 7))^(1/10) or x = (-1)^(2/5) (1/10 (sqrt(349) - 7))^(1/10) or x = -(-1)^(3/5) (1/10 (sqrt(349) - 7))^(1/10) or x = (-1)^(3/5) (1/10 (sqrt(349) - 7))^(1/10) or x = -(-1)^(4/5) (1/10 (sqrt(349) - 7))^(1/10) or x = (-1)^(4/5) (1/10 (sqrt(349) - 7))^(1/10) or y + 7/10 = -sqrt(349)/10

Subtract 7/10 from both sides:

x = -(sqrt(349) - 7)^(1/10)/10^(1/10) or x = (sqrt(349) - 7)^(1/10)/10^(1/10) or x = -((-1)^(1/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(1/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(2/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(2/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(3/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(3/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(4/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(4/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or y = -7/10 - sqrt(349)/10

Substitute back for y = x^10:

x = -(sqrt(349) - 7)^(1/10)/10^(1/10) or x = (sqrt(349) - 7)^(1/10)/10^(1/10) or x = -((-1)^(1/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(1/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(2/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(2/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(3/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(3/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(4/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(4/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x^10 = -7/10 - sqrt(349)/10

Taking 10^th roots gives (-7/10 - sqrt(349)/10)^(1/10) times the 10^th roots of unity:

Answer:  x = -(sqrt(349) - 7)^(1/10)/10^(1/10) or x = (sqrt(349) - 7)^(1/10)/10^(1/10) or x = -((-1)^(1/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(1/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(2/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(2/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(3/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(3/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -((-1)^(4/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = ((-1)^(4/5) (sqrt(349) - 7)^(1/10))/10^(1/10) or x = -(1/10 (-7 - sqrt(349)))^(1/10) or x = (1/10 (-7 - sqrt(349)))^(1/10) or x = -(-1)^(1/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = (-1)^(1/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = -(-1)^(2/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = (-1)^(2/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = -(-1)^(3/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = (-1)^(3/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = -(-1)^(4/5) (1/10 (-7 - sqrt(349)))^(1/10) or x = (-1)^(4/5) (1/10 (-7 - sqrt(349)))^(1/10)

8 0
3 years ago
The vertex of this parabola is at (3,-2).when the x-value is 4,the y-value is 3.what is the coefficient of the squared example e
Oliga [24]

Vertex = (3, - 2) this should be your answer. dm if im wrong

5 0
3 years ago
Other questions:
  • The side of a square are 3 cm long. One vertex of the square is at (2,0) on a square coordinate grid marked in centimeters units
    7·1 answer
  • Which inverse operations could you use to solve the equation(m/5)- 8= -6
    8·2 answers
  • PLEASE HELP ASAP!!! 75 POINTS AND BRAINLIEST!!!
    6·1 answer
  • Heeeeeeeeeeeeeeeeeeeeeellllllllllllllllllllllllllllllllllllllllllppppppppppppppppppppp
    5·1 answer
  • All I need is the answer I have legit no idea what I'm doing.
    12·1 answer
  • Write an equation for the following word problem.
    12·1 answer
  • Which phrases can be used to represent the inequality? Check all that apply. One-half + k greater-than 18
    11·1 answer
  • Solve x^2+32=0<br> Please solve step by step
    13·1 answer
  • True or false: 3x^2+5x^3=8x^3
    10·1 answer
  • Which of the following graphs is the inverse of f(x) = x2 + 4?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!