Answer:
1.047 M
Explanation:
The given reaction:

For dichromate :
Molarity = 0.254 M
Volume = 15.8 mL
The conversion of mL to L is shown below:
1 mL = 10⁻³ L
Thus, volume = 15.8 ×10⁻³ L
Thus, moles of dichromate :

Moles of dichromate = 0.0040132 moles
1 mole of dichromate react with 6 moles of iron(II) solution
Thus,
0.0040132 moles of dichromate react with 6 × 0.0040132 moles of iron(II) solution
Moles of iron(II) solution = 0.02408 moles
Volume = 23 mL = 0.023 L
Considering:

<u>Molarity = 0.02408 / 0.023 = 1.047 M</u>
Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
It is false. The salt bridge is not a path for electrons, but a path for ions to flow from one half-cell to another. It help to balance the charge between the oxidation and reduction vessels.
Answer:
covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms
the sharing of electrons allows each atom to attain the equivalent of a full outer shell, corresponding to a stable electronic configuration.
Explanation: