.035 gallons equals 0.1324894 L
Gle's cache of http://www.middleschoolchemistry.com/lessonplans/chapter5/lesson4<span>. It is a snapshot of the page as it appeared on 21 Oct 2017 07:24:57 GMT.</span>
The percentage error is given by multiplying relative error by 100%.
Therefore, to get the percentage error we need relative error which is given by dividing the absolute error with the actual value.
Absolute error = 0.133
Percentage error = 0.133/5.586 × 100%
= 2.38%
The percentage error is therefore; 2.38%
Answer:
<u><em></em></u>
- <u><em>Concentrated</em></u>
Explanation:
Concentration measures the amount of solute in a solution. There are many expressions of concentration. Some of then are percentage (mass/mass, volume/mass, volume/volume), molarity, molality, mole fraction, among others.
When a solution has a high concentration it is said that it is <em>concentrated; </em>when a solution has a low concentration is is said that is is diluted.
Concentrated solutions expressed in percentage typically have about 80 - 90% (or more) of solute.
Diluted solutions expressed in percentage, tipylcally have about 10% - 20% or less.
But they are not fixed limits. You might say that a 85% solution is concentrated. Acids at 75 % sure are concentrated.
Hence, a 93.3% solution is concentrated, definitely.
To determine the amount of 6.0 M H2SO4 needed for the preparation, equate the number of moles of the 6.0 M and 2.5 M H2SO4 solution. This is done as follows
M1 x V1 = M2 x V2
Substituting the known variables,
(6.0 M) x V1 = (2.5 M) x (4.8 L)
Solving for V1 gives an answer of V1 = 2 L. Thus, to prepare the needed solution, dilute 2 L of 6.0 M H2SO4 solution with water until the volume reach 4.8 L.