Explanation:
Ionic equation
NaCl(aq) --> Na+(aq) + Cl-(aq)
Na2SO4(aq) --> 2Na+(aq) + SO4^2-(aq)
In NaCl solution, 1 mole of Na+ is dissociated in 1 liter of solution while in Na2SO4, 2 moles of Na+ is dissociated in 1 liter of solution.
Molecular weight of NA2SO4 = (23*2) + 32 + (16*4)
= 142 g/mol
Molecular weight of NaCl = 23 + 35.5
= 58.5 g/mol
Masses
% Mass of NA+ in Na2SO4 = mass of Na+/total mass of Na2SO4 * 100
= 46/142 * 100
= 32.4%
% Mass of NA+ in NaCl = mass of Na+/total mass of NaCl * 100
= 23/58.5 * 100
= 39.3%
Therefore, the % mass of Na+ in NaCl and Na2SO4 are different so it cannot be used.
Answer:
the pressure would increase
Explanation:
Answer: A different group of scientists using different methods.
Answer:
The volume of the Kleenex box is 64 cm.
Explanation:
Volume = B x W x H
So: V = 8cm x 2cm x 4cm = 64cm
We are told that KOH is being used to completely neutral H₂SO₄ according to the following reaction:
KOH + H₂SO₄ → H₂O + KHSO₄
If KOH can completely neutralize H₂SO₄, then there must be an equal amount of moles of each as they are in a 1:1 ratio:
0.025 L x 0.150 mol/L = .00375 mol KOH
0.00375 mol KOH x 1 mole H₂SO₄/1 mole KOH = 0.00375 mol H₂SO₄
We are told we have 15 mL of H₂SO₄ initially, so now we can find the original concentration:
0.00375 mol / 0.015 L = 0.25 mol/L
The concentration of H₂SO₄ being neutralized is 0.25 M.