1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepladder [879]
3 years ago
10

Yesterday, there were 56 problems assigned for math homework. Desmond got 14 problems correct and 42 problems incorrect. What pe

rcentage did Desmond get correct?
Mathematics
1 answer:
Vika [28.1K]3 years ago
6 0

Answer: 25%

100/56 = 1.785714285714286

1.785714285714286 x 14 = 25

You might be interested in
I am so lonely someone help me plz
Blizzard [7]

Answer:

hi

Step-by-step explanation:

lol

6 0
3 years ago
Read 2 more answers
Taylor Series Questions!
riadik2000 [5.3K]
5.
f(x)=\sin x\implies f(\pi)=0
f'(x)=\cos x\implies f'(\pi)=-1
f''(x)=-\sin x\implies f''(\pi)=0
f'''(x)=-\cos x\implies f'''(\pi)=1

Clearly, each even-order derivative will vanish, and the terms that remain will alternate in sign, so the Taylor series is given by

f(x)=-(x-\pi)+\dfrac{(x-\pi)^3}{3!}-\dfrac{(x-\pi)^5}{5!}+\cdots
f(x)=\displaystyle\sum_{n\ge0}\frac{(-1)^{n-1}(x-\pi)^{2n+1}}{(2n+1)!}

Your answer is off by a sign - the source of this error is the fact that you used the series expansion centered at x=0, not x=\pi, and so the sign on each derivative at x=\pi is opposite of what it should be. I'm sure you can figure out the radius of convergence from here.

- - -

6. Note that this is already a polynomial, so the Taylor series will strongly resemble this and will consist of a finite number of terms. You can get the series by evaluating the derivatives at the given point, or you can simply rewrite the polynomial in x as a polynomial in x-2.

f(x)=x^6-x^4+2\implies f(2)=50
f'(x)=6x^5-4x^3\implies f'(2)=160
f''(x)=30x^4-12x^2\implies f''(2)=432
f'''(x)=120x^3-24x\implies f'''(2)=912
f^{(4)}(x)=360x^2-24\implies f^{(4)}(2)=1416
f^{(5)}(x)=720x\implies f^{(5)}(2)=1440
f^{(6)}(x)=720\implies f^{(6)}(2)=720
f^{(n\ge7)}(x)=0\implies f^{(n\ge7)}(2)=0

\implies f(x)=50+160(x-2)+216(x-2)^2+152(x-2)^3+59(x-2)^4+12(x-2)^5+(x-2)^6

If you expand this, you will end up with f(x) again, so the Taylor series must converge everywhere.

I'll outline the second method. The idea is to find coefficients so that the right hand side below matches the original polynomial:

x^6-x^4+2=(x-2)^6+a_5(x-2)^5+a_4(x-2)^4+a_3(x-2)^3+a_2(x-2)^2+a_1(x-2)+a_0

You would expand the right side, match up the coefficients for the same-power terms on the left, then solve the linear system that comes out of that. You would end up with the same result as with the standard derivative method, though perhaps more work than necessary.

- - -

7. It would help to write the square root as a rational power first:

f(x)=\sqrt x=x^{1/2}\implies f(4)=2
f'(x)=\dfrac{(-1)^0}{2^1}x^{-1/2}\implies f'(4)=\dfrac1{2^2}
f''(x)=\dfrac{(-1)^1}{2^2}x^{-3/2}\implies f''(4)=-\dfrac1{2^5}
f'''(x)=\dfrac{(-1)^2(1\times3)}{2^3}x^{-5/2}\implies f'''(4)=\dfrac3{2^8}
f^{(4)}(x)=\dfrac{(-1)^3(1\times3\times5)}{2^4}x^{-7/2}\implies f^{(4)}(4)=-\dfrac{15}{2^{11}}
f^{(5)}(x)=\dfrac{(-1)^4(1\times3\times5\times7)}{2^5}x^{-9/2}\implies f^{(5)}(4)=\dfrac{105}{2^{14}}

The pattern should be fairly easy to see.

f(x)=2+\dfrac{x-4}{2^2}-\dfrac{(x-4)^2}{2^5\times2!}+\dfrac{3(x-4)^3}{2^8\times3!}-\dfrac{15(x-4)^4}{2^{11}\times4!}+\cdots
f(x)=2+\displaystyle\sum_{n\ge1}\dfrac{(-1)^n(-1\times1\times3\times5\times\cdots\times(2n-3)}{2^{3n-1}n!}(x-4)^n

By the ratio test, the series converges if

\displaystyle\lim_{n\to\infty}\left|\frac{\dfrac{(-1)^{n+1}(-1\times\cdots\times(2n-3)\times(2n-1))(x-4)^{n+1}}{2^{3n+2}(n+1)!}}{\dfrac{(-1)^n(-1\times\cdots\tiems(2n-3))(x-4)^n}{2^{3n-1}n!}}\right|
\implies\displaystyle\frac{|x-4|}8\lim_{n\to\infty}\frac{2n-1}{n+1}=\frac{|x-4|}4
\implies |x-4|

so that the ROC is 4.

- - -

10. Without going into much detail, you should have as your Taylor polynomial

\sin x\approx T_4(x)=\dfrac12+\dfrac{\sqrt3}2\left(x-\dfrac\pi6\right)-\dfrac14\left(x-\dfrac\pi6\right)^2-\dfrac1{4\sqrt3}\left(x-\dfrac\pi6\right)^3+\dfrac1{48}\left(x-\dfrac\pi6\right)^4

Taylor's inequality then asserts that the error of approximation on the interval 0\le x\le\dfrac\pi3 is given by

|\sin x-T_4(x)|=|R_4(x)|\le\dfrac{M\left|x-\frac\pi6\right|^5}{5!}

where M satisfies |f^{(5)}(x)|\le M on the interval.

We know that (\sin x)^{(5)}=\cos x is bounded between -1 and 1, so we know M=1 will suffice. Over the given interval, we have \left|x-\dfrac\pi6\right|\le\dfrac\pi6, so the remainder will be bounded above by

|R_4(x)|\le\dfrac{1\times\left(\frac\pi6\right)^5}{5!}=\dfrac{\pi^5}{933120}\approx0.000328

which is to say, over the interval 0\le x\le\dfrac\pi3, the fourth degree Taylor polynomial approximates the value of \sin x near x=\dfrac\pi6 to within 0.000328.
7 0
4 years ago
50 POINTS!! PLEASE HELP ME OUT AND I WILL GIVE BRAINLIEST TO BEST ANSWER THAT SHOWS STEPS! THANK YOU!!!!
zzz [600]

Answer:

it is not a direct variation

Step-by-step explanation:

To have a direct variation

y/x = k for all values of x and y

y/x = 11/7

y/x    = 13/8

y/x = 15/9 = 5/3

y/x = 17/10

11/7 does not equal 13/8 so  it is not a direct variation

4 0
3 years ago
Read 2 more answers
PLEASE HELP, I WILL MARK BRAINLIEST(no links)
Bas_tet [7]

Answer:

-70 degrees

Step-by-step explanation:

What you need to do is subtract 10 from -58 to find the difference;

-58-12 = -70 degrees

7 0
3 years ago
Read 2 more answers
How many solutions are there to the equation shown below?<br><br> 7x + 12 = 5x – 8
ExtremeBDS [4]
There is 1 solution. X = -10
4 0
4 years ago
Other questions:
  • What is an array for 4*2=8?
    6·1 answer
  • Write the phrase as a variable expression. Use x to represent​ "a number."ElevenEleven more than a number.
    15·1 answer
  • Divide $370 into three parts such that second part is 1/4 of the third part and the ratio between the first and the third part i
    11·1 answer
  • a sum of money is divided among peter paul and jane in ratio 13:12:7 calculate how much paul gets if amount peter gets more than
    15·1 answer
  • An octagonal pyramid ... how many faces does it have, how many vertices and how many edges? A triangular prism ... how many face
    8·1 answer
  • A 16-foot monument is composed of a rectangular prism and a square pyramid, as shown.
    9·1 answer
  • A weir is used to measure water flow in a channel. For a rectangular broad crested weir, the flow Q in cubic feet per second is
    6·2 answers
  • Does x=y -1 represent a fraction ?
    11·1 answer
  • Plzzzzz help meee!!!!!!!!!!!!
    9·2 answers
  • If the measures of two interior angles of a triangle are 25° and 84º, what is the measure of the third
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!