The optimum pinhole diameter for a camera box with a length of 10 centimeters is 0.446 mm
<h3><u>
Solution:</u></h3>
Given that,
<h3><u>The optimum diameter d (in millimeters) of the pinhole in a pinhole camera can be modeled by:</u></h3>
![d = 1.9[(5.5 \times 10^{-4})l]^{\frac{1}{2}}](https://tex.z-dn.net/?f=d%20%3D%201.9%5B%285.5%20%5Ctimes%2010%5E%7B-4%7D%29l%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D)
where l is the length (in millimeters) of the camera box
<h3><u>Find the optimum pinhole diameter for a camera box with a length of 10 centimeters</u></h3>
l = 10 cm
We know that,
10 cm = 100 mm
<em><u>Therefore, plug in l = 100 in given formula</u></em>
![d = 1.9[(5.5 \times 10^{-4}) \times 100]^{\frac{1}{2}}\\\\d = 1.9[5.5 \times 10^{-4} \times 10^2]^{\frac{1}{2}}\\\\d = 1.9[5.5 \times 10^{-2}]^{\frac{1}{2}}\\\\d = 1.9 \times 5.5^{\frac{1}{2} \times 10^{-1}}\\\\d = 0.19 \times 2.345207\\\\d = 0.4455 \approx 0.446](https://tex.z-dn.net/?f=d%20%3D%201.9%5B%285.5%20%5Ctimes%2010%5E%7B-4%7D%29%20%5Ctimes%20100%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5Cd%20%3D%201.9%5B5.5%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctimes%2010%5E2%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5Cd%20%3D%201.9%5B5.5%20%5Ctimes%2010%5E%7B-2%7D%5D%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5C%5C%5C%5Cd%20%3D%201.9%20%5Ctimes%205.5%5E%7B%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2010%5E%7B-1%7D%7D%5C%5C%5C%5Cd%20%3D%200.19%20%5Ctimes%202.345207%5C%5C%5C%5Cd%20%3D%200.4455%20%5Capprox%200.446)
Thus the optimum pinhole diameter for a camera box with a length of 10 centimeters is 0.446 mm
Answer:
70.4x60
Step-by-step explanation:
<h3>
Answer: Choice D) 0.0285</h3>
=========================================
Explanation:
You move the decimal point two spots to the left to go from 2.85% to 0.0285
Or you can think of it like this:
2.85% = (2.85)/100 = 0.0285
since "percent" means "per 100"
Sjdjdkzjdkdncmdkdjfnkrmd, sjdjdjdjd dkdkcekdkdk djdjjdkdjdj ..
Answer:
x=4
Step-by-step explanation:
(whole secant) x (external part) = (whole secant) x (external part)
(6+x) * 6 =(5+x+3) *5
(6+x) * 6 =(x+8) *5
Distribute
36+6x = 5x+40
Subtract 5x from each side
36+6x-5x = 5x-5x+40
36+x = 40
Subtract 36 from each side
36+x-36 = 40-36
x = 4