Answer:
7.55 km/s
Explanation:
The force of gravity between the Earth and the Hubble Telescope corresponds to the centripetal force that keeps the telescope in uniform circular motion around the Earth:

where
is the gravitational constant
is the mass of the telescope
is the mass of the Earth
is the distance between the telescope and the Earth's centre (given by the sum of the Earth's radius, r, and the telescope altitude, h)
v = ? is the orbital velocity of the Hubble telescope
Re-arranging the equation and substituting numbers, we find the orbital velocity:

When an object does not move even on pushing , static frictional force acts on in opposite direction of the applied force to stop the object from moving. static frictional force is a self adjusting force and it adjust its value according to the applied force if the applied force is smaller than the maximum value of static frictional force. The object starts moving once the applied force on it becomes greater than the maximum static frictional force. hence the statement is true.
50m
Explanation:
Displacement is the length of path traveled which is measured from start to the finishing of the path.
Analysis of the journey;
Starts from:
0 30m from right
15m to left
50m to right
The displacement is 50m from the starting point.
Distance is total path traveled and for this problem it is 30+ 15 + 50 = 95m
learn more:
displacement brainly.com/question/5461768
#learnwithBrainly
Answer:
72 m/s
Explanation:
D1 = 3 cm, v1 = 2 m/s
D2 = 0.5 cm,
Let the velocity at narrow end be v2.
By use of equation of continuity
A1 v1 = A2 v2
3.14 × 3 × 3 × 2 = 3.14 × 0.5 ×0.5 × v2
v2 = 72 m/s