Answer:
the can's kinetic energy is 0.42 J
Explanation:
given information:
Mass, m = 460 g = 0.46 kg
diameter, d = 6 cm, so r = d/2 = 6/2 = 3 cm = 0.03 m
velocity, v = 1.1 m/s
the kinetic energy of the can is the total of kinetic energy of the translation and rotational.
KE =
I ω^2 + 
where
I =
and ω = 
thus,
KE =
(
)^2 + 
=
+ 
=
+ 
= 
=
= 0.42 J
It's not so much a "contradiction" as an approximation. Newton's law of gravitation is an inverse square law whose range is large. It keeps people on the ground, and it keeps satellites in orbit and that's some thousands of km. The force on someone on the ground - their weight - is probably a lot larger than the centripetal force keeping a satellite in orbit (though I've not actually done a calculation to totally verify this). The distance a falling body - a coin, say - travels is very small, and over such a small distance gravity is assumed/approximated to be constant.
2.4 ounces is the average weight of a hot wheels car.
Answer:
1) Work is a measure of energy transfer that occurs when an object is moved over a distance by an external force at least part of which is applied in the direction of the displacement. 2) Work is calculated through joules. 3) It's possible to calculate work by multiplying the amount of force applied by the distance that the force is applied. If we know the amount of force the stick applies to the puck and the distance that the stick is applying the force to the puck, we can figure out the amount of work done.
Explanation:
Hope this helped!- Nya~ :3
Length of the sheet is given as

width of the sheet is given as

now let say its thickness is "t"
so the volume of the sheet is given as



mass of the sheet is given as

now we have


by solving above we have

so the thickness of sheet will be above