1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olchik [2.2K]
3 years ago
12

Help me please why is school hard i-

Mathematics
2 answers:
Lelechka [254]3 years ago
8 0

Answer:

12 1/4

Step-by-step explanation:

You would first add the fractions which will get you 5/4. then you will add the whole numbers which will get you 11. Then there is a extra number in 5/4 so you can tranfer it to the whole number which will become... 12 and then you will be left with 12 1/4

blagie [28]3 years ago
6 0
The answer is 12 1/4. If you add the whole numbers you get 11. Then you add 3/4 and 2/4, which gets you 5/4. 5/4 can then be simplified into 1 1/4. Finally you add 1 1/4 to 11 and you get 12 1/4. Hope this helps :)
You might be interested in
The value of all of the quarters and dimes in a
Inessa05 [86]

Answer:

Step-by-step explanation:

5 0
3 years ago
Consider functions f and g below.
Katyanochek1 [597]

Answer:

g(x) approaches negative infinity

Step-by-step explanation:

g(x) = -x² + 2x + 4

limit at g(x) approaches infinity = -(∞)² + 2(∞) + 4 = -∞

I can't solve for f(x) because you didnt give me f(x)

4 0
3 years ago
Read 2 more answers
How many terms of the arithmetic sequence {1,22,43,64,85,…} will give a sum of 2332? Show all steps including the formulas used
MA_775_DIABLO [31]

There's a slight problem with your question, but we'll get to that...

Consecutive terms of the sequence are separated by a fixed difference of 21 (22 = 1 + 21, 43 = 22 + 21, 64 = 43 + 21, and so on), so the <em>n</em>-th term of the sequence, <em>a</em> (<em>n</em>), is given recursively by

• <em>a</em> (1) = 1

• <em>a</em> (<em>n</em>) = <em>a</em> (<em>n</em> - 1) + 21 … … … for <em>n</em> > 1

We can find the explicit rule for the sequence by iterative substitution:

<em>a</em> (2) = <em>a</em> (1) + 21

<em>a</em> (3) = <em>a</em> (2) + 21 = (<em>a</em> (1) + 21) + 21 = <em>a</em> (1) + 2×21

<em>a</em> (4) = <em>a</em> (3) + 21 = (<em>a</em> (1) + 2×21) + 21 = <em>a</em> (1) + 3×21

and so on, with the general pattern

<em>a</em> (<em>n</em>) = <em>a</em> (1) + 21 (<em>n</em> - 1) = 21<em>n</em> - 20

Now, we're told that the sum of some number <em>N</em> of terms in this sequence is 2332. In other words, the <em>N</em>-th partial sum of the sequence is

<em>a</em> (1) + <em>a</em> (2) + <em>a</em> (3) + … + <em>a</em> (<em>N</em> - 1) + <em>a</em> (<em>N</em>) = 2332

or more compactly,

\displaystyle\sum_{n=1}^N a(n) = 2332

It's important to note that <em>N</em> must be some positive integer.

Replace <em>a</em> (<em>n</em>) by the explicit rule:

\displaystyle\sum_{n=1}^N (21n-20) = 2332

Expand the sum on the left as

\displaystyle 21 \sum_{n=1}^N n-20\sum_{n=1}^N1 = 2332

and recall the formulas,

\displaystyle\sum_{k=1}^n1=\underbrace{1+1+\cdots+1}_{n\text{ times}}=n

\displaystyle\sum_{k=1}^nk=1+2+3+\cdots+n=\frac{n(n+1)}2

So the sum of the first <em>N</em> terms of <em>a</em> (<em>n</em>) is such that

21 × <em>N</em> (<em>N</em> + 1)/2 - 20<em>N</em> = 2332

Solve for <em>N</em> :

21 (<em>N</em> ² + <em>N</em>) - 40<em>N</em> = 4664

21 <em>N</em> ² - 19 <em>N</em> - 4664 = 0

Now for the problem I mentioned at the start: this polynomial has no rational roots, and instead

<em>N</em> = (19 ± √392,137)/42 ≈ -14.45 or 15.36

so there is no positive integer <em>N</em> for which the first <em>N</em> terms of the sum add up to 2332.

4 0
2 years ago
How many different perfect cubes are among the positive actors of 2021^2021
9966 [12]

Answer:

hope this helps :D

Step-by-step explanation:

Perfect cube factors:

If a number is a perfect cube, then the power of the prime factors should be divisible by 3.

Example 1:Find the number of factors of293655118 that are perfect cube?

Solution: If a number is a perfect cube, then the power of the prime factors should be divisible by 3. Hence perfect cube factors must have

2(0 or 3 or 6or 9)—– 4 factors

3(0 or 3 or 6)  —–  3  factors

5(0 or 3)——- 2 factors

11(0 or 3 or 6 )— 3 factors

Hence, the total number of factors which are perfect cube 4x3x2x3=72

Perfect square and perfect cube

If a number is both perfect square and perfect cube then the powers of prime factors must be divisible by 6.

Example 2: How many factors of 293655118 are both perfect square and perfect cube?

Solution: If a number is both perfect square and perfect cube then the powers of prime factors must be divisible by 6.Hence both perfect square and perfect cube must have

2(0 or 6)—– 2 factors

3(0 or 6) —– 2 factors

5(0)——- 1 factor

11(0 or 6)— 2 factors

Hence total number of such factors are 2x2x1x2=8

Example 3: How many factors of293655118are either perfect squares or perfect cubes but not both?

Solution:

Let A denotes set of numbers, which are perfect squares.

If a number is a perfect square, then the power of the prime factors should be divisible by 2. Hence perfect square factors must have

2(0 or 2 or 4 or 6 or 8)—– 5 factors

3(0 or 2 or 4 or 6)  —– 4 factors

5(0 or 2or 4 )——- 3 factors

11(0 or 2or 4 or6 or 8 )— 5 factors

Hence, the total number of factors which are perfect square i.e. n(A)=5x4x3x5=300

Let B denotes set of numbers, which are perfect cubes

If a number is a perfect cube, then the power of the prime factors should be divisible by 3. Hence perfect cube factors must have

2(0 or 3 or 6or 9)—– 4 factors

3(0 or 3 or 6)  —–  3  factors

5(0 or 3)——- 2 factors

11(0 or 3 or 6 )— 3 factors

Hence, the total number of factors which are perfect cube i.e. n(B)=4x3x2x3=72

If a number is both perfect square and perfect cube then the powers of prime factors must be divisible by 6.Hence both perfect square and perfect cube must have

2(0 or 6)—– 2 factors

3(0 or 6) —– 2 factors

5(0)——- 1 factor

11(0 or 6)— 2 factors

Hence total number of such factors are i.e.n(A∩B)=2x2x1x2=8

We are asked to calculate which are either perfect square or perfect cubes i.e.

n(A U B )= n(A) + n(B) – n(A∩B)

=300+72 – 8

=364

Hence required number of factors is 364.

8 0
3 years ago
Mandy cut 34 1⁄3 feet of string to use for the tail of a kite. However, she realized that the tail was too long and cut off 6 3⁄
andrezito [222]
34 1/3- 6 3/5= 416/15

8 0
3 years ago
Other questions:
  • Homework: Chapter R Review Homework
    15·1 answer
  • Using suitable identity find the value of
    5·1 answer
  • Consider the two triangles shown below note the triangles are not drawn to scale are the two triangles congruent?
    9·2 answers
  • What is the zero of r(x)<br> =<br> 8/3X-16
    6·1 answer
  • There are 7 1/2 bottles of lemonade. Each bottle holds 1 5/6 quarts. How many quarts of lemonade are there?
    15·1 answer
  • Historically, the average diameter of the holes drilled has been 0.25 cm and the average range has been 0.10 cm. Samples of size
    11·1 answer
  • Which of the following are congruence theorems for right triangles? Check all that apply.
    12·2 answers
  • |3x-11|=x+3<br> Write both solutions as equations on the same line separated by a comma.
    11·1 answer
  • Helppp i literally dont understand this at all
    9·1 answer
  • Resolver por igualación <br> 2x+3y=2<br> 6x+12y=1
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!