1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrei [34K]
3 years ago
7

Y- 4/5=1 what does y equal to?

Mathematics
2 answers:
navik [9.2K]3 years ago
6 0

Answer:

y=1.8

Step-by-step explanation:

first change the fraction into a decimal.

4/5 =0.8

plus the 0.8 to both sides

y=1.8

Vaselesa [24]3 years ago
5 0

Answer:

y  -  \frac{4}{5} +  \frac{4}{5}  = 1 +  \frac{4}{5}  \\ y =  \frac{5 + 4}{5 }  \\ y =  \frac{9}{5}

You might be interested in
We know that February has either 28 or 29 days, but there is a year in the future, February will have 30 days
Karo-lina-s [1.5K]

Answer:

The year 2020 is a leap year, which means February will have 29 days rather than 28, and the overall number of days will be 366 rather than 365. This was also the case in 2016, and the year 2024 will be a leap year once more.

Step-by-step explanation:

5 0
3 years ago
Find the value of x
Svet_ta [14]

Answer:

150^o

Step-by-step explanation:

<u>Step 1:  Distribute the plus</u>

<u />(x + 15)^o + (135 - x)^o

x + 15 + 135 - x

<u>Step 2:  Combine like terms</u>

<u />x + 15 + 135 - x

(x - x)^o + (15 + 135)^o

0 + 150^o

150^o

Answer:  150^o

7 0
3 years ago
Read 2 more answers
Determine the domain and range of each function<br><br> f(x)=-|x|-2
Alinara [238K]
Find the domain by finding where the function is defined. The range is the set of values that correspond with the domain.

Domain: (- infinity, infinity)
Range: (- infinity, -2)
4 0
3 years ago
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
Three people invest at a ratio of 1:4:7. If the partnership is worth $636,000, what did each person invest?
olga_2 [115]

Answer:

See the detailed answers below

Step-by-step explanation:

Given data

Ratio=  1:4:7

combined ratio= 1+4+7= 12

Total amount= $636,000

Apply the part to all method

The first person will take

1/12= x/ 636,000

cross multiply

12x= 636,000*1

x= 636,000/12

x= 53000

The second person will take

4/12= x/ 636,000

cross multiply

12x= 636,000*4

x= 2544000/12

x= 212000

The third person will take

7/12= x/ 636,000

cross multiply

12x= 636,000*7

x= 4452000/12

x= 371000

6 0
3 years ago
Other questions:
  • a catapult launches a boulder with an upward velocity of 122 feet per second the height of the boulder H in feet after T seconds
    12·2 answers
  • Jimmy has 40apples and Karl has 20 how many more apples does jimmy has from Karl
    5·2 answers
  • Someone please help me out
    8·2 answers
  • The data below are yields for two different types of corn seed that were used on adjacent plots of land. Assume that the data ar
    15·1 answer
  • Please help 20 points and brainliest
    5·2 answers
  • The base pyramid below has a dimension of 16" x 16" a slant height of 17 inches in an altitude of 15 inches find the total surfa
    14·1 answer
  • Need help, please 10 pts
    8·1 answer
  • Write an equation that represents a parallel line to y=1/2x + 4
    8·2 answers
  • Find x<br> 1. 2 square root 6. 2. 6 square root 2. 3. 12. 4. 8
    5·1 answer
  • Please use distribution and no need to graph.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!