Isolate the root expression:
![\sqrt[3]{x+1}+2=0\implies\sqrt[3]{x+1}=-2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%2B1%7D%2B2%3D0%5Cimplies%5Csqrt%5B3%5D%7Bx%2B1%7D%3D-2)
Take the third power of both sides:
![\sqrt[3]{x+1}=-2\implies(\sqrt[3]{x+1})^3=(-2)^3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%2B1%7D%3D-2%5Cimplies%28%5Csqrt%5B3%5D%7Bx%2B1%7D%29%5E3%3D%28-2%29%5E3)
Simplify:
![(\sqrt[3]{x+1})^3=(-2)^3\implies x+1=-8](https://tex.z-dn.net/?f=%28%5Csqrt%5B3%5D%7Bx%2B1%7D%29%5E3%3D%28-2%29%5E3%5Cimplies%20x%2B1%3D-8)
Isolate and solve for

:

Since the cube root function is bijective, we know this won't be an extraneous solution, but it doesn't hurt to verify that this is correct. When

, we have
![\sqrt[3]{-9+1}=\sqrt[3]{-8}=\sqrt[3]{(-2)^3}=-2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-9%2B1%7D%3D%5Csqrt%5B3%5D%7B-8%7D%3D%5Csqrt%5B3%5D%7B%28-2%29%5E3%7D%3D-2)
as required.
Answer:
10000000000
Step-by-step explanation:
10000000000
33,169
= 30,000+ 3,000+ 100+ 60+ 9.
The expanded form for 33,169 is 30,000+ 3,000+ 100+ 60+ 9~
Answer:
A fraction is a division expression where both dividend and divisor are integers (typically called the numerator and denominator), and there is no implication that the division must be evaluated further.
Step-by-step explanation: think about this piece of information
Answer:
f(x)=-1/3
Step-by-step explanation: