1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedaia [141]
4 years ago
12

Solve least to greatest 5/9,1/3,8/16,1/4

Mathematics
1 answer:
Fittoniya [83]4 years ago
4 0

Answer:

1/4,1/3,8/16,5/9

Step-by-step explanation:

>jwjjsjsisj

You might be interested in
Which is smaller, one-sixth of 54 or one-third of 21?
deff fn [24]
<span>1/6 of 54 = 9 and 1/3 of 21 = 7
<span>so, 1/3 of 21 is smaller than 1/6 of 54.
Hope this helps :) </span></span>
6 0
3 years ago
Read 2 more answers
Divide 16x3 – 12x2 + 20x – 3 by 4x + 5.
nalin [4]

Answer:

4x^2 - 8x + 15 - \frac{78}{4x+5}

Step-by-step explanation:

<em>To solve polynomial long division problems like these, it's helpful to build a long division table. Getting used to building these can make problems like this much simpler to solve.</em>

Begin by looking at the first term of the cubic polynomial.

What would we have to multiply 4x + 5 by to get an expression containing 16x^3? The answer is 4x^2, since (4x + 5) \times 4x^2 = 16x^2 + 20x.

This is the first step of our long division, and we write out the start of our long division table like this:

{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,4x^2\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,16x^3 + 20x^2\\

On the left is the divisor. On top is 4x^2. In the middle is the polynomial we are dividing, and on the bottom is the result of multiplying our divisor by

The next step is to subtract the bottom expression from the middle one, like so:

{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,4x^2\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,0x^3 - 32x^2\\

We are left with -32x^2. The next thing to do is to add the next term of the polynomial we are dividing to the bottom line, like this:

{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,4x^2\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 + 20x\\

Now we return to the beginning of the instructions, and repeat the process: namely, what would we have to multiply 4x + 5 by to get an expression containing -32x^2? The answer is -8x, and we fill out our long division table like so:

{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,4x^2 - \,\,\,\,8x\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 + 20x\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 - 40x\\

Once again, we subtract the bottom expression from the one above it, and include the next term of the divisor, like so:

{ }\qquad{ }\qquad{ }\quad{ }4x^2 - \,\,\,\,8x \,+ 15\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 + 20x\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{- 32x^2 - 40x}\\{ }\qquad{ }\qquad{ }\qquad{ }\qquad{ }\qquad{ }\,\,\,\,\,60x - 3\\

And repeat. What do we multiply 4x + 5 by to get an expression containing 60x? The answer is 15. Our completed long division table looks like this:{ }\qquad{ }\qquad{ }\quad{ }4x^2 - \,\,\,\,8x \,+15\\4x + 5\quad)\!\!\overline{\,\,\,16x^3 - 12x^2 + 20x - 3}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\underline{16x^3 + 20x^2}\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 32x^2 + 20x\\{ }\qquad{ }\quad{ }\quad{ }\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\underline{- 32x^2 - 40x}\\{ }\qquad{ }\qquad{ }\qquad{ }\qquad{ }\qquad{ }\,\,\,\,\,60x - 3\\{ }\qquad{ }\hspace{3cm}\,\,\underline{60x + 75}\\{ }\hspace{4.3cm}\,\,-78

Now, the expression at the top,

4x^2 - 8x + 20x + 15

is our quotient, and the last number, -78, is our remainder.

Hence we arrive at the solution of

\frac{16x^3-12x^2+20x-3}{4x+5} =4x^2 - 8x + 15 - \frac{78}{4x+5}.

6 0
3 years ago
Can someone help me with good strategies for 2 digit multiplication ( 14 x 14 )
ch4aika [34]
Just multiply my friend. The answer is 196
5 0
4 years ago
Read 2 more answers
Pls answer this math question. In a given class 12 students have cats, 15 have dogs, and 6have both. There are nine students wit
Over [174]
Working step by step I first see all my different groups then add them all together
so
12 - cats
15 - dogs
6 - both
9 - neither

12 students + 15 students + 6 students + 9 students = 42 students
therefore 42 students are in the class

16 + 10 + 3 + 12 = 41

I’m sorry if i got it wrong!
5 0
4 years ago
Read 2 more answers
Someone plz help me :(
Nostrana [21]

Answer:

<h2>C</h2>

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • Deion Sanders can run the 40 yard dash in 4.19 seconds. At this rate, how long would it take him to run a mile?
    8·1 answer
  • What is the answer to this question ?
    8·1 answer
  • Coffee is sold in jars
    10·2 answers
  • snail travels at a rate of 2.37 feet per minute. write a route to describe the function how far will the snail travel in six min
    5·1 answer
  • Convert 10m in cm.<br>♡​
    13·1 answer
  • Help please im stupid
    10·1 answer
  • The relationship between the length and weight of certain sea turtles can be approximated by the equation L = 0,55 W,
    5·1 answer
  • What is the volume of the triangular prism?
    6·1 answer
  • Geometry, please answer question ASAP
    12·1 answer
  • What does qwerty mean or what is it don't respond
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!