1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andreas93 [3]
3 years ago
8

Help quick pls! i’m struggling lol

Mathematics
1 answer:
Leya [2.2K]3 years ago
7 0

Answer:

cos[angle] is 8/17

Helpful reminder for these is Soh Cah Toa -

Sin = Opposite/Hypotenuse

Cosine =Adjacent/Hypotenuse

Tangent = Opposite/Adjacent

You might be interested in
Kyle’s bank statement shows a balance of –$18.50. Which describes the magnitude, or size, of the debt in dollars?
oksano4ka [1.4K]

Answer:

C. $18.50.

Step-by-step explanation:

We have been given that Kyle’s bank statement shows a balance of –$18.50. We are asked to determine the magnitude, or size, of the debt in dollars.

We know that the magnitude of a negative number is absolute value of negative number.

\text{Magnitude of debt in dollars}=|-\$18.50|

Since absolute value of a negative number is opposite of the number.

\text{Magnitude of debt in dollars}=-(-\$18.50)=\$18.50

Therefore, option C is the correct choice.

5 0
3 years ago
Read 2 more answers
Im almost done with my test just need 2 more :) and please help me
creativ13 [48]

Answer:

░░░░░▐▀█▀▌░░░░▀█▄░░░

░░░░░▐█▄█▌░░░░░░▀█▄░░

░░░░░░▀▄▀░░░▄▄▄▄▄▀▀░░

░░░░▄▄▄██▀▀▀▀░░░░░░░

░░░█▀▄▄▄█░▀▀░░

░░░▌░▄▄▄▐▌▀▀▀░░ This is Bob

▄░▐░░░▄▄░█░▀▀ ░░

▀█▌░░░▄░▀█▀░▀ ░░ Copy And Paste Him onto all of ur brainly answers

░░░░░░░▄▄▐▌▄▄░░░ So, He Can Take

░░░░░░░▀███▀█░▄░░ Over brainly

░░░░░░▐▌▀▄▀▄▀▐▄░░

░░░░░░▐▀░░░░░░▐▌░░

░░░░░░█░░░░░░░░█

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Here is a table of values for y=f(x).
GenaCL600 [577]

i would pick number C) since i think it would be the correct answer

5 0
3 years ago
Find all solutions to the following quadratic equations, and write each equation in factored form.
dexar [7]

Answer:

(a) The solutions are: x=5i,\:x=-5i

(b) The solutions are: x=3i,\:x=-3i

(c) The solutions are: x=i-2,\:x=-i-2

(d) The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) The solutions are: x=1

(g) The solutions are: x=0,\:x=1,\:x=-2

(h) The solutions are: x=2,\:x=2i,\:x=-2i

Step-by-step explanation:

To find the solutions of these quadratic equations you must:

(a) For x^2+25=0

\mathrm{Subtract\:}25\mathrm{\:from\:both\:sides}\\x^2+25-25=0-25

\mathrm{Simplify}\\x^2=-25

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x=\sqrt{-25},\:x=-\sqrt{-25}

\mathrm{Simplify}\:\sqrt{-25}\\\\\mathrm{Apply\:radical\:rule}:\quad \sqrt{-a}=\sqrt{-1}\sqrt{a}\\\\\sqrt{-25}=\sqrt{-1}\sqrt{25}\\\\\mathrm{Apply\:imaginary\:number\:rule}:\quad \sqrt{-1}=i\\\\\sqrt{-25}=\sqrt{25}i\\\\\sqrt{-25}=5i

-\sqrt{-25}=-5i

The solutions are: x=5i,\:x=-5i

(b) For -x^2-16=-7

-x^2-16+16=-7+16\\-x^2=9\\\frac{-x^2}{-1}=\frac{9}{-1}\\x^2=-9\\\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\x=\sqrt{-9},\:x=-\sqrt{-9}

The solutions are: x=3i,\:x=-3i

(c) For \left(x+2\right)^2+1=0

\left(x+2\right)^2+1-1=0-1\\\left(x+2\right)^2=-1\\\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\\\x+2=\sqrt{-1}\\x+2=i\\x=i-2\\\\x+2=-\sqrt{-1}\\x+2=-i\\x=-i-2

The solutions are: x=i-2,\:x=-i-2

(d) For \left(x+2\right)^2=x

\mathrm{Expand\:}\left(x+2\right)^2= x^2+4x+4

x^2+4x+4=x\\x^2+4x+4-x=x-x\\x^2+3x+4=0

For a quadratic equation of the form ax^2+bx+c=0 the solutions are:

x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:}\quad a=1,\:b=3,\:c=4:\quad x_{1,\:2}=\frac{-3\pm \sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}

x_1=\frac{-3+\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}+i\frac{\sqrt{7}}{2}\\\\x_2=\frac{-3-\sqrt{3^2-4\cdot \:1\cdot \:4}}{2\cdot \:1}=\quad -\frac{3}{2}-i\frac{\sqrt{7}}{2}

The solutions are: x=-\frac{3}{2}+i\frac{\sqrt{7}}{2},\:x=-\frac{3}{2}-i\frac{\sqrt{7}}{2}

(e) For \left(x^2+1\right)^2+2\left(x^2+1\right)-8=0

\left(x^2+1\right)^2= x^4+2x^2+1\\\\2\left(x^2+1\right)= 2x^2+2\\\\x^4+2x^2+1+2x^2+2-8\\x^4+4x^2-5

\mathrm{Rewrite\:the\:equation\:with\:}u=x^2\mathrm{\:and\:}u^2=x^4\\u^2+4u-5=0\\\\\mathrm{Solve\:with\:the\:quadratic\:equation}\:u^2+4u-5=0

u_1=\frac{-4+\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad 1\\\\u_2=\frac{-4-\sqrt{4^2-4\cdot \:1\left(-5\right)}}{2\cdot \:1}=\quad -5

\mathrm{Substitute\:back}\:u=x^2,\:\mathrm{solve\:for}\:x\\\\\mathrm{Solve\:}\:x^2=1=\quad x=1,\:x=-1\\\\\mathrm{Solve\:}\:x^2=-5=\quad x=\sqrt{5}i,\:x=-\sqrt{5}i

The solutions are: x=1,\:x=-1,\:x=\sqrt{5}i,\:x=-\sqrt{5}i

(f) For \left(2x-1\right)^2=\left(x+1\right)^2-3

\left(2x-1\right)^2=\quad 4x^2-4x+1\\\left(x+1\right)^2-3=\quad x^2+2x-2\\\\4x^2-4x+1=x^2+2x-2\\4x^2-4x+1+2=x^2+2x-2+2\\4x^2-4x+3=x^2+2x\\4x^2-4x+3-2x=x^2+2x-2x\\4x^2-6x+3=x^2\\4x^2-6x+3-x^2=x^2-x^2\\3x^2-6x+3=0

\mathrm{For\:}\quad a=3,\:b=-6,\:c=3:\quad x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{\left(-6\right)^2-4\cdot \:3\cdot \:3}}{2\cdot \:3}\\\\x_{1,\:2}=\frac{-\left(-6\right)\pm \sqrt{0}}{2\cdot \:3}\\x=\frac{-\left(-6\right)}{2\cdot \:3}\\x=1

The solutions are: x=1

(g) For x^3+x^2-2x=0

x^3+x^2-2x=x\left(x^2+x-2\right)\\\\x^2+x-2:\quad \left(x-1\right)\left(x+2\right)\\\\x^3+x^2-2x=x\left(x-1\right)\left(x+2\right)=0

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x=0\\x-1=0:\quad x=1\\x+2=0:\quad x=-2

The solutions are: x=0,\:x=1,\:x=-2

(h) For x^3-2x^2+4x-8=0

x^3-2x^2+4x-8=\left(x^3-2x^2\right)+\left(4x-8\right)\\x^3-2x^2+4x-8=x^2\left(x-2\right)+4\left(x-2\right)\\x^3-2x^2+4x-8=\left(x-2\right)\left(x^2+4\right)

Using the Zero Factor Theorem: = 0 if and only if = 0 or = 0

x-2=0:\quad x=2\\x^2+4=0:\quad x=2i,\:x=-2i

The solutions are: x=2,\:x=2i,\:x=-2i

3 0
3 years ago
In how many ways can six people sit in a six-passenger car?
nekit [7.7K]

Answer:

number of ways = 720

Step-by-step explanation:

The number of ways  six people sit in a six-passenger car is given by the number of permutations of 6 elements in 6 different positions ( seats), then

number of ways = number of permutations of 6 elements = 6! = 6 * 5 * 4 *3 * 2 * 1 = 720

Since the first person that sits can be on any of the seats , but then the second person that sits can choose any of 5 seats (since the first person had already occupied one) , the third can choose 4 ... and so on.

5 0
4 years ago
Other questions:
  • Which step is included in the construction of perpendicular lines using a point on the line
    10·1 answer
  • the Law of Detachment and the Law of Syllogism to draw a conclusion from the given statements:Franz is taller than Isabel. Isabe
    13·1 answer
  • 30÷10 divide until you find the ten thousand digit
    9·1 answer
  • I’m so confused pls help...
    14·1 answer
  • In 2010, the average person in Mexico used about 5.25 kilowatt-hours of electricity per day. The population of
    13·1 answer
  • Help please i need to do this for a review
    14·1 answer
  • The number of cities in a region over time is represented by the function C(x)=2.9(1.05)^x. The approximate number of people per
    12·1 answer
  • In the image above x=11 cm. Find the surface area of the figure.
    9·1 answer
  • In 1980 a movie ticket cost $2.50. Now a movie ticket costs about $10.
    12·1 answer
  • Which equation represents the transformed function below? on a coordinate plane, a parent function starts at (0, negative 1) and
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!