Answer:
6
Step-by-step explanation:
2x-m
When you substitue in the values for x and m:
2(4)-2
Now you can solve the equation:
2(4)-2
8-2
6
So this leads to the answer
2x-m=6 or 2(4)-2=6
Sin32.23= 8/15. This is the answer. I checked on the calculator
(1/3) × the cone's volume = The cylinder's volume.
Step-by-step explanation:
Step 1:
The volume of any cone is obtained by multiplying
with π, the square of the radius (
) and the height (
).
So the volume of the cone,
.
Step 2:
The cylinder's volume is nearly the same as the cone but instead by multiplying
we multiply with 1.
So the cylinder's volume is determined by multiplying π with the square of the radius of the cylinder (
) and the height of the cylinder (
).
So the the cone's volume,
.
Step 3:
Now we equate both the volumes to each other.
The cone's volume : The cylinder's volume =
=
.
So if we multiply the cone's volume with
we will get the cylinder's volume with the same dimensions.
Answer: 0.0035
Step-by-step explanation:
Given : The readings on thermometers are normally distributed with a mean of 0 degrees C and a standard deviation of 1.00 degrees C.
i.e.
and
Let x denotes the readings on thermometers.
Then, the probability that a randomly selected thermometer reads greater than 2.17 will be :_
![P(X>2.7)=1-P(\xleq2.7)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{2.7-0}{1})\\\\=1-P(z\leq2.7)\ \ [\because\ z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.9965\ \ [\text{By z-table}]\ \\\\=0.0035](https://tex.z-dn.net/?f=P%28X%3E2.7%29%3D1-P%28%5Cxleq2.7%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B2.7-0%7D%7B1%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq2.7%29%5C%20%5C%20%5B%5Cbecause%5C%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.9965%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%20%5C%5C%5C%5C%3D0.0035)
Hence, the probability that a randomly selected thermometer reads greater than 2.17 = 0.0035
The required region is attached below .
I’ll help you out, but what are the numbers in between? Like does it go boy 0, .3, .6, .9, to 1? Or is there a different pattern