The minimum surface area that such a box can have is 380 square
<h3>How to determine the minimum surface area such a box can have?</h3>
Represent the base length with x and the bwith h.
So, the volume is
V = x^2h
This gives
x^2h = 500
Make h the subject
h = 500/x^2
The surface area is
S = 2(x^2 + 2xh)
Expand
S = 2x^2 + 4xh
Substitute h = 500/x^2
S = 2x^2 + 4x * 500/x^2
Evaluate
S = 2x^2 + 2000/x
Differentiate
S' = 4x - 2000/x^2
Set the equation to 0
4x - 2000/x^2 = 0
Multiply through by x^2
4x^3 - 2000 = 0
This gives
4x^3= 2000
Divide by 4
x^3 = 500
Take the cube root
x = 7.94
Substitute x = 7.94 in S = 2x^2 + 2000/x
S = 2 * 7.94^2 + 2000/7.94
Evaluate
S = 380
Hence, the minimum surface area that such a box can have is 380 square
Read more about surface area at
brainly.com/question/76387
#SPJ1
Answer:
4 1/4
Step-by-step explanation:
BRAINLIEST?!
Answer:
117
Step-by-step explanation:
Subtract from 180 to get interior and exterior angles.
180 - 101 = 79
79 + 38 = 117
180 - 117 = 63
180 - 63 = 117
Answer:
see below
Step-by-step explanation:
Any line between two points on the circle is a chord.
Any angle with sides that are chords and with a vertex on the circle is an inscribed angle.
Any angle with sides that are radii and a vertex at the center of the circle is a central angle. Each central angle listed here should be considered a listing of two angles: the angle measured counterclockwise from the first radius and the angle measured clockwise from the first radius.
<h3>1.</h3>
chords: DE, EF
inscribed angles: DEF
central angles: DCF . . . . . note that C is always the vertex of a central angle
<h3>2.</h3>
chords: RS, RT, ST, SU
inscribed angles: SRT, RSU, RST, RTS, TSU
central angles: RCS, RCT, RCU, SCT, SCU, TCU
<h3>3.</h3>
chords: DF, DG, EF, EG
inscribed angles: FDG, FEG, DFE, DGE
central angles: none
<h3>4.</h3>
chords: AE
inscribed angles: none
central angles: ACB, ACD, ACE, BCD, BCE, DCE
Answer:
20%
Step-by-step explanation:
21/ 105
= 0.2 x 100
20%