Answer:
<em>y = - x + 6 </em>
Step-by-step explanation:
<em>--</em><em> </em>Rhombus diagonals <u><em>are perpendicular and bisect</em></u> each other.
<em>--</em><em> </em>A(
,
) and B(
,
)
Coordinates of <u><em>the midpoint</em></u> of a segment AB are
(
,
)
and <u><em>formula of a slope</em></u> of the line segment AB is
m =
<em>-- </em>If AB ⊥ CD then
×
= - 1
<em>-- </em><u><em>Slope-point of linear equation</em></u> is
y -
= m( x -
)
~~~~~~~~~~~~~~~~
M(0, 2)
T(4, 6)
=
= 1
= - 1
Coordinates of the intersection of the diagonals are (
,
) = (2, 4)
y - 4 = - 1(x - 2)
<em>y = - x + 6</em> <u><em>is slope-intercept form of the diagonal AH</em></u>